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sources with a convolutional
neural network
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The effective analysis of Passive Acoustic Monitoring (PAM) data has the

potential to determine spatial and temporal variations in ecosystem health

and species presence if automated detection and classification algorithms are

capable of discrimination between marine species and the presence of

anthropogenic and environmental noise. Extracting more than a single sound

source or call type will enrich our understanding of the interaction between

biological, anthropogenic and geophonic soundscape components in the

marine environment. Advances in extracting ecologically valuable cues from

the marine environment, embedded within the soundscape, are limited by the

time required for manual analyses and the accuracy of existing algorithms

when applied to large PAM datasets. In this work, a deep learning model is

trained for multi-class marine sound source detection using cloud computing

to explore its utility for extracting sound sources for use in marine mammal

conservation and ecosystem monitoring. A training set is developed

comprising existing datasets amalgamated across geographic, temporal and

spatial scales, collected across a range of acoustic platforms. Transfer learning

is used to fine-tune an open-source state-of-the-art ‘small-scale ’

convolutional neural network (CNN) to detect odontocete tonal and

broadband call types and vessel noise (from 0 to 48 kHz). The developed

CNN architecture uses a custom image input to exploit the differences in

temporal and frequency characteristics between each sound source. Each

sound source is identified with high accuracy across various test conditions,

including variable signal-to-noise-ratio. We evaluate the effect of ambient

noise on detector performance, outlining the importance of understanding

the variability of the regional soundscape for which it will be deployed. Our

work provides a computationally low-cost, efficient framework for mining big

marine acoustic data, for information on temporal scales relevant to the
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management of marine protected areas and the conservation of

vulnerable species.
KEYWORDS

marine soundscapes, CNN - convolutional neural network, passive acousticmonitoring,
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Introduction

The need to manage effectively marine resources and

habitats in the Anthropocene era is a current conservation

issue that needs addressing as we seek to move to a better

balance between exploitation and preservation of marine

ecosystems. Maintaining productive coastal seas, and protected

areas that conserve the species which reside there, depends on

our ability to rapidly detect functional disturbances across

multiple spatial scales, and respond in a time-effective manner.

Sound, travelling faster and farther in water than in air, is a vital

sensory resource for marine animals, used by marine mammals,

fish and invertebrates for communication, predation and

navigation (Duarte et al., 2021). The production of sound by

marine life allows researchers to eavesdrop beneath the surface

with Passive Acoustic Monitoring (PAM), increasingly used to

record the cacophony of the marine environment (Sousa-Lima

et al., 2013; Roch et al., 2017; Howe et al., 2019). Analysis of

PAM data collected over long temporal and spatial scales can be

used as a reliable indicator of habitat quality by characterizing

the biological, anthropogenic and geophonic sound source

components within a region’s soundscape (Marley et al., 2017;

Pittman, 2017; McKenna et al., 2021). Effective analysis of

regional soundscape data can provide insights into species

composition, long-term changes in species distribution,

biodiversity and human activity (Pijanowski et al., 2011; Davis

et al., 2020). Knowledge of this is critical for wildlife

conservation, particularly for migratory marine species, and in

regions designated as marine protected areas (MPAs).

The introduction of anthropogenic sound to the sea alters

the acoustic environment which may negatively affect the

presence and persistence of populations and species (Kunc

et al., 2016; Dunlop, 2016; Stafford et al., 2018; Erbe et al.,

2019). Holistic models for studying underwater sound in

relation to the detection of marine species allow for the

assessment of overall ecosystem health, and of certain

elements that cause long-term and chronic adverse effects to

marine life such as low-intensity pervasive vessel noise, and site-

specific noise contributors (e.g. seismic arrays, echo sounders

and Acoustic Deterrent Devices (ADDs)). Geographic shifts in

the spatio-temporal distributions of marine mammals have been
02
found to be directly impacted by anthropogenic use of the

oceans (Pompa et al., 2011; Cox et al., 2018). The requirement

to minimize the environmental impacts of noise on marine

organisms has therefore become a part of many international

agreements such as the Convention for the Protection of the

marine environment of the North-East Atlantic (OSPAR

Convention). In addition, underwater noise has become an

important aspect of the Marine Strategy Framework Directive

(MSFD) adopted by the European Commission in 2008, which

considers both the spatial and temporal distribution of loud

impulsive noise, as well as trends in low-frequency

continuous noise.

Acoustic recorders are a low-cost, non-invasive method for

studying a wide range of biological processes, marine organisms

and anthropogenic activities within marine habitats over long

time scales (Wang et al., 2019) and are increasingly used for

regional monitoring of marine species. The enhanced use of

PAM has resulted in the growth of existing underwater datasets

which can reach scales of terabytes per deployment. As the

volume of acoustic data increases, the time required for

extracting ecologically important information also increases

(Sugai et al., 2019), with derived information potentially

delivered to stakeholders long after the monitoring period. The

development of algorithms and methodological approaches for

exploiting the information embedded within marine

soundscapes is essential for effective long-term species

monitoring and ecosystem health assessment, on temporal

scales relevant to marine management.

Traditional approaches to extracting acoustic signals from

PAM data stem from the fields of signal processing and machine

learning. Computationally low-cost algorithms such as the

band-limited energy sum and the Teager energy operator

(Kaiser, 1990; Gillespie, 1997; Kandia and Stylianou, 2006;

Kim et al., 2006 and Mae et al., 2010), matched filtering and

spectrogram correlation have been used successfully for call

extraction in noisy data, static PAM mooring data (Širović

et al., 2015) and from autonomous vehicles (Baumgartner and

Mussoline, 2011; Baumgartner et al., 2013; Baumgartner et al.,

2020). The typical approach is to use some form of generic

detector to identify a period of potential interest, extract those

periods and then input that signal segment to a classifier. A
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classifier places the identified signal into a broad category,

species-specific group or specific call type belonging to a single

family depending on the application (Bittle & Duncan, 2013).

Many signal processing/machine learning approaches have been

used for classifying marine mammal calls including discriminant

analysis (Steiner, 1981), support vector machines (Jarvis et al.,

2008; Roch et al., 2008), generalized linear models, hidden

markov models (Roch et al., 2004; Roch et al., 2007; Brown

and Smaragdis, 2009; Brown et al., 2010; Roch et al., 2011a; Pace

et al., 2012) and classification and regression tree analysis

(Oswald et al., 2007).

The aforementioned algorithms rely upon a large amount of

human input, often expert, presenting a limitation to their

development. They yield systems which are not easily

generalizable to broad categories of sound sources, data

collected at differing sample rates, geographic locations or on

different recording platforms. Reliance on manually selected

features to define the signal(s) of interest requires a

sophisticated knowledge of signal processing and may not

adequately describe the complex and variable time-frequency

characteristics of sounds (Jiang et al., 2019). For many marine

species, acoustic repertoires are not well understood restricting

the ability to define parameters on which these methods depend

(Dudzinski et al., 2009; Gruden & White, 2016; Vester

et al., 2017).

Acoustically active species reside in all oceanic bodies, but

much of the legislation for Marine Protected Areas is focused on

protecting coastal regions (water depth<200m) (Jones, 2012).

These shallow water areas are characterized by acoustic

complexity. The geophonic, anthropogenic and biophonic

components of the soundscape share an acoustic space which

varies over short spatial and temporal scales. Variation is

attributed to changes in regional bathymetry, bottom-substrate

type, oceanographic and weather conditions (Kuperman and

Lynch, 2004), resulting in ever changing ambient noise

conditions. Developments in technology and the ability to

mount PAM recorders on a range of static and moving

platforms adds to the variation in propagation conditions

which can occur in a single PAM dataset (McKenna et al.,

2021). In this work, Convolutional Neural Networks (CNNs) are

applied to PAM data for the detection of highly varied marine

acoustic signals. CNNs are more robust than the previously

discussed techniques to fluctuating ambient noise (Xie

et al., 2020).

CNNs are end-to-end deep neural networks, which

efficiently handle the complexity of 2-Dimensional input data

and excel at pattern recognition tasks when input data is noisy

(Khan et al., 2020). CNNs have been shown to outperform

existing machine learning techniques rivalling human

performance at signal detection (LeCun et al., 2015) and are

becoming commonplace in the bio-acoustic domain (Stowell,

2022). The bottleneck in acoustic datasets is the labor-intensive

task of manually labelling archived PAM data for use in CNN
Frontiers in Marine Science 03
training (Sugai et al., 2019). CNNs learn to discriminate spectro-

temporal information directly from a labelled spectrogram used

as an image input, removing the dependence on human experts

for manual feature extraction, and improving the robustness to

variation in signal structure, caller distance and signal-to-noise-

ratio (SNR) conditions (Gibb et al., 2019). The success of CNNs

has been demonstrated by many studies in the marine domain

for binary species detection and multi-class species classification

(Belgith et al., 2018; Harvey, 2018; Liu et al., 2018; Bergler et al.,

2019; Bermant et al., 2019; Shiu et al., 2020; Yang et al., 2020;

Zhong et al., 2020; Allen et al., 2021) advancing the capabilities

of mining large PAM datasets for detecting species of interest.

Existing work tends to make use of spectrogram representations

across a limited bandwidth, which is selected according to the

species (or signal) of interest. Herein the full frequency band is

used to represent the signal as sources of interest in this

application span the complete range of frequencies available.

This does render the classification task more challenging, as the

proportion of pixels containing information important to the

classification task can be quite low compared to that available

when the bandwidth is limited (Kahl et al., 2020), suggesting that

large training sets may be necessary for the system to learn

the task.

In this work we detect sound sources across the frequency

spectra, to encompass the soundscape a signal is embedded in,

resulting in source signatures occupying a small proportion of

the input image. This a difficult problem when access to labelled

data is limited. Transfer learning with fine-tuning presents a

useful technique for developing a detector where labelled data is

scarce (Shin et al., 2016) as a CNN trained for one task or

domain is re-purposed for another related task or domain. It is

effective as the original model is trained upon a large image

dataset to enable the learning of low-level features applicable to

many tasks, and is increasingly exploited by work which detects

and classifies marine species acoustic signals from PAM data

(Ibrahim et al., 2020; Thomas et al., 2020; Shiu et al., 2020; Lu

et al., 2021). Fine-tuning is used to tweak the architecture to

make it suitable for the new task or domain. In this work we

harness the power of transfer learning, exploiting the features

learned by pre-trained models, making use of a ‘light-weight’

architecture, EfficientNet B0 (Tan and Le, 2019). The solution

developed is intended to be computationally efficient and

suitable for on-platform deployment, while achieving high

accuracies across differing sound source categories.

This works aims to demonstrate the application of transfer

learning to discriminate major components of the soundscape in

shallow waters, which vary in temporal and spectral

characteristics, and assess the impact of variations in ambient

noise on the detection capabilities of the approach. The resulting

CNN model allows for sound source detection across a wide

frequency range, to extract marine mammal call types and other

soundscape components, as a method toward extracting

ecological context within PAM data.
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Study site

Climatic and anthropogenic impacts are the likely cause of

northward extensions of warmer species to mid-latitude areas,

particularly for the Delphinidae family in the British Isles

(Pirotta et al., 2015; Marley et al., 2017; Evans and Waggitt,

2020). Recording this shift in habitat use is vital for

understanding the ecological importance of UK waters, for an

appropriate evaluation of the effectiveness of current MPAs and

policy applied to protected species. Twenty-three species of

Cetacea have been recorded in Western Scottish waters over

the last 25 years, of which eleven are regularly sighted, the

majority of which are delphinids. All delphinid species in the

region are listed on Annex IV of the Council Directive 92/43/

EEC of 21 May 1992, the Habitats Directive, and have led to the

designation of several MPAs in the region (Solandt, 2018). The

COMPASS project (EU INTERREG) comprises a network of

twelve PAM moorings in Western Scotland (Figure 1)

operational since 2017, for monitoring protected sites and

species, and nested within a suite of marine protected areas.

Data from the COMPASS project, in common with many

other PAM datasets, has few manual annotations, and analysis of

this data requires automation. The COMPASS data provides a

case study for investigating the use of transfer learning in

developing an automated detection model for multi-sound

source classification of signals, which vary in temporal and

spectral characteristics, in shallow water environments. We

demonstrate the use of multi-class detection with application
Frontiers in Marine Science 04
to the acoustic repertoire of delphinids and vessel sounds,

combining labelled data from multiple data sources which

span geographic, seasonal and temporal ranges, to develop a

bespoke training set. Further, the effect of variable ambient noise

conditions due to inter-site variability on detector performance

is assessed.
Methods

A computationally compact CNNmodel is developed for the

detection and classification of marine sound sources spanning a

wide frequency bandwidth, using real data representative of

variable soundscapes. This section provides a detailed

summary of the (i) Data acquisition and annotation, (ii) Data

pre-processing, (iii) Model architecture and (iv) Training

and testing.
(i) Data acquisition

To obtain a robust network, the training data should

represent the full diversity of each class. To increase the

diversity with our training set we utilize data collected by a

variety of organizations, under differing survey protocols and

across a range of geographic locations and temporal scales, the

technical details of these data sources are summarized in Table 1.

The COMPASS data is supported by 4 additional sources. The
FIGURE 1

The location of the three hydrophone moorings used in this work, located off the west coast of Scotland, UK. Stanton Banks, Tolsta and
Garvellachs recorder water depths were 72m, 102m and 95m respectively and are part of the EU INTERREG COMPASS project which aims to
provide effective monitoring and management of Marine Protected Areas, including both Special Areas of Conservation and Special Protected
Areas. Bathymetry data was sourced from GEBCO and Digimap.
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additional datasets are available with different levels of

annotation to mitigate the lack of annotations available for the

COMPASS dataset. Two additional sources are from the open-

access DCLDE conference datasets, DCLDE 2011 (Oregon) and

DCLDE 2022 (Honolulu, Hawaii), both collected in the Pacific

Ocean with annotations of interest being those for delphinid

vocalizations. The Hebridean Whale and Dolphin Trust

(HWDT) provided delphinid PAM recordings from West

Scotland and archived acoustic data collected in Sandown Bay,

Isle of Wight was provided by the University of Southampton

(Table 1) which provide a rich source of ship noise data. The

final source of data comes from the COMPASS project itself: it
Frontiers in Marine Science 05
provides the greatest number of examples in the training set,

ensuring the model learns to differentiate signals of interest from

the ambient noise present in the deployment region

(Figure 2, Table 2).

Compass
This work makes use of acoustic data collected at three of the

twelve COMPASS moorings: Stanton Banks, Tolsta and

Garvellachs, collected between 2017 and 2019 (Figure 1). Each

site possesses specific geographic and bathymetric conditions

resulting in a distinct soundscape. The sites are located on the

outer boundaries of the COMPASS array (Table 3). Stanton
A B

C

FIGURE 2

Creation of the training, validation and test sets. Sound files came from a range of data sources with differing recording hardware, survey
platforms and location (see main text for more information). (A, B) Raw audio was manually collated into three-second frames each containing
an example of ambient noise, delphinid call types or vessel noise. (C) To train and evaluate the model the sound sources, post augmentation,
were randomly shuffled and divided into three folders; Training – 70%, Validation – 20% and Testing – 10%. Two datasets were computed for
the standard spectrogram input and the stacked spectrogram input. The validation set was used to evaluate model performance during each
iteration of training. The test set was shown to the model after training to test its performance on unseen data.
TABLE 1 Description of the recording apparatus, and acoustic settings used to obtain the PAM data for DCLDE, HWDT, Solent and COMPASS data
collections used in this study.

Dataset Temporal
Period

Recording
Platform

Sensitivity
(dB)

Recorder
Depth

Sample Rate
(kHz)

Gain/Pre-
amp

Bandwidth for
analysis (kHz)

DCLDE
Hawaii

2017 HTI-96-min 14-85kHz ±5 dB at 158 dB
re 1V/mPa

0-30m 500 37dB gain
1500Hz High
Pass Filter

0 - 250

DCLDE
Oregon

2006
2007

ITC 1042 HS150 Flat frequency response (±3
dB) 1-100kHz

10-30m 192 NA 0 - 96

HWDT 2019 HS150 -204 dB re 1V/mPa 4-10m 96 29-35 DB gain 0 - 48

Sandown
Bay

Aug-Sept
2020

Wildlife Acoustic Song
meter SM4M

-164.5 dB re 1V/mPa 12m 48
96

10dB
0-15dB

0 -24
0 - 48

COMPASS 2017-present SoundTrap 300 HF 121 dB re 1V/mPa 72-102m 96 NA 0 - 48
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Banks (56.097 N, -8.022 W), is an exposed site which sits at a

water depth of 104m, the most western component of the

network, with a bottom substrate composed of mud to muddy

sand. Tolsta is a sheltered site to the North of the Inner Hebrides

(58.394 N, -6.012 W) at a water depth of 94m, on a bed of sand.

Garvellachs sits within a harbor at a depth of 76m (56.235 N,

-5.756 W), the bottom type for this location is undescribed. For

each mooring a single omnidirectional acoustic broadband

recorder is moored 3-5m above the seafloor, recording on a

20/40 minutes on/off duty cycle, saved in 20-minute wav files

captured at a sample rate of 96 kHz.
DCLDE datasets
The DCLDE 2011 Oregon dataset contains calls from short-

beaked and long-beaked common dolphins (Delphinus delphis

and D. capensis), bottlenose dolphins (Tursiop truncatus) and

spinner dolphins (Stenella longirostris), which were used to

develop the training set with ground-truthed delphinid signals.

Recorded in the Southern California Bight, the dataset

encompasses both echolocations click and tonal calls (Roch

et al., 2011b).

The DCLDE 2022 dataset includes annotated PAM

recordings from Hawaiian waters in 2017, featuring delphinid

calls, both identified and unidentified to species level, (Yano

et al., 2018). Acoustic data is collected on a six-channel towed

hydrophone from a large survey vessel, only channels 5 and 6 are

included within the training set; these channels being those
Frontiers in Marine Science 06
furthest from the towing vessel, resulting in the lowest noise

levels from the vessel.

HWDT
Acoustic data collected during dedicated visual and acoustic

line surveys, within the waters surrounding the Inner and Outer

Hebrides, Scotland, was analyzed. PAM files recorded during

both the summer and winter seasons, 2019, were provided by

HWDT together with associated timestamps for delphinid tonal

and broadband calls, classified to species level. A sailing vessel

(Silurian) collected the data and use of this platform resulted in a

low level of vessel noise present within the field recordings

of odontocetes.

Sandown bay
Archive acoustic data collected in August 2020 within

Sandown Bay, UK (50.690 N, -1.258 W) was provided as a

basis for vessel detection, recorded on a static seabed mooring

deployed at 12m water depth. This data source presents vessel

signatures to the model recorded in a shallow water acoustic

environment. Across the recording period, a range of vessel

types were present in large numbers due to the proximity of

shipping lanes.

Data annotation
Four broad sound source classes are defined to test the

feasibility of using a small-scale transfer learning developed
TABLE 3 Contribution of PAM files from COMPASS to model development.

COMPASS site Model use No. of wav files Hours of recording Season/year obtained

Tolsta Training 152 50.6 Nov – March 2018

Stanton Banks Training 59 19.6 June – Nov 2017

Tolsta Testing 322 107 Dec, March, April, June - 2019

Stanton Banks Testing 322 107 Dec, March, April, June - 2019

Garvellachs Testing 322 107 Dec, March, April, June - 2019
TABLE 2 Composition of training set source signatures, breakdown by dataset of origin, before and after augmentation. .

Ambient Delphinid Tonal Biological Clicks Vessel Noise Totals
COMPASS 3288 2422 792 361 6863

DCLDE Hawaii 36 190 29 62 317

HWDT 0 1014 145 102 1261

DCLDE Oregon 0 693 86 0 779

Sandown Bay 0 0 123 3855 3978

Totals 3324 4319 1175 4380 13,198

Augmented 9972 12,957 3525 13,140 39,594

Training Set 6981 9070 2468 9198 27,717

Validation Set 1994 2591 705 2628 7918

Test Set 997 1295 353 1314 3959
frontie
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CNN to detect soundscape components across a wide

bandwidth; ‘Ambient noise’, ‘Vessel noise’ and two classes

relating to the presence of delphinids, ‘Delphinid tonal’ and

‘Biological clicks’ (Figure 3), representing delphinid vocal

repertoires, anthropogenic sounds, and a negative class –

ambient noise. Ambient noise spans the entire analysis

bandwidth and is described as the soundscape of the water

column in the absence of one of the distinct sound sources.

Delphinid tonal includes tonal frequency-modulated whistles

with a typical frequency range of 1 kHz – 40 kHz. The species

most frequently encountered in the region of the COMPASS

array are: bottlenose dolphins (Tursiops truncatus), killer whales

(Orcinus orca), Risso’s dolphin (Grampus griseus), white-beaked

dolphin (Lagenorhynchus albirostris), Atlantic white-sided

dolphin (L. acutus), and striped dolphin (S. coeruleoalba)

(Hague et al., 2020). Biological clicks for this work are defined

as echolocation click trains and burst pulse delphinid signals,

spanning frequency ranges from 8 kHz to 100 kHz. Due to the

limited analysis bandwidth of 48 kHz the echolocation clicks

recorded on the system are not a faithful representation of the

pulses in the water. This class does not include the low-

frequency clicking sounds which are labelled as part of the

noise class. The precise source of this low-frequency clicking

remains uncertain off the UK coastline but is qualitatively similar

to sounds associated with snapping shrimp: such species are

usually associated with more temperate waters (Au and Banks,
Frontiers in Marine Science 07
1998). Vessel noise encompasses low-frequency vessel noise and

high-frequency signals produced from echo-sounders.

PAM files are divided into blocks of 3 s, a length chosen as a

compromise, with the sound sources selected in this work having

durations over different time-scales: milliseconds (individual

echolocation clicks), seconds (whistles and echo-sounders) and

several minutes (vessel passage). The 3 s blocks were reviewed

visually (spectrograms) and aurally using Audacity software

(Audacity version 3.0.02, 2021) to classify each block into one

of the four categories, developing a training set of 13,198

spectrograms (Table 3). Spectrograms are not time-centered

on the detected signal, so the signal can occur in part or in full

within the 3 s time window.

DCLDE and HWDT data were provided with associated

weak labels, labels which identified PAM files containing signals

of interest but not timestamps matching sounds pertaining to

that label. Consequently, these datasets were included in the

annotation process with the selection of PAM files based on the

weak labels. Data blocks within the COMPASS, (Table 3), and

Sandown Bay datasets were selected randomly from the entire

datasets, providing a sampling of the soundscape across

temporal and seasonal scales.

Annotations were labelled by a team, under the supervision

of the lead author according to a set of rules: (i) if a whistle is

present in the 3 s frame the label is ‘Delphinid Tonal’, regardless

of the presence of another sound source, e.g. clicks; (ii)
FIGURE 3

Representative spectrograms illustrating the four classes used as input for training; Ambient noise, Delphinid tonal, Biological clicks
(echolocation and burst pulses) and Vessel noise. Each spectrogram had an image resolution of 224x224 pixels and is computed using a
Hanning window, 75% overlap, and an FFT size of 2048, standardised across the various sampling rates. Time and Frequency are on the
horizontal and vertical axes, respectively. Three different examples are shown for each sound class as spectrogram characteristics vary across
temporal, spatial and geographic scales introducing variance during training, essential for generalisation to new unseen datasets.
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echolocation clicks in the same frame as vessel noise is labelled as

clicks to reduce delphinid false negatives; (iii) a sound source is

labelled if any detection is made by an analyst regardless of signal

strength in the frame in comparison to the ambient noise. All

labels were reviewed by the lead author to ensure annotation

rules were followed.

The existence of class noise in the training set, due to

mislabeling, is a common issue and results in a marginal

decrease in the accuracy of the classifier when the error rate is

low (Nazari et al., 2018). Retrospectively, a strategy was

employed for annotation verification with 20% (n = 2639) of

the spectrograms within the training set sampled randomly. Two

analysts independently (blind) annotated the spectrograms

providing their own associated labels (Supplementary Table 1).

Across the verification data an error metric of 3.3% is reported,

reflecting the mean per class of the two analysts compared to the

original training labels. Most discrepancies occurred between the

‘Ambient Noise’ (6.3%) and ‘Vessel Noise’ (3.7%) classes

(Supplementary Table 1) where distant vessels were difficult to

identify within the ambient soundscape. We expect there

remains an approximate error of 3% within the overall

training set.
(ii) Data pre-processing:

When using data from disparate sources ideally one would

standardize collections protocols, for instance using a
Frontiers in Marine Science 08
common sample rate and common/calibrated sensor

systems. We wish to exploit datasets whose collection was

not collected according to a common protocol and so have to

deal with inconsistencies between recording configurations. A

set of pre-processing steps were applied to ensure a consistent

overall dataset. First the mean data was centered (the mean

value of a recording subtracted from all the samples). Not all

of the systems were calibrated, with the result that different

gains applied to the acoustic data from different datasets. In

particular, the dynamic range of the COMPASS data was

significantly smaller than that of the other data. This was

mitigated by applying 30 dB gain to the COMPASS data,

which yielded spectrograms which were subjectively judged to

be comparable with those from the other data sources. The

effect of these steps is visualized in Figure 4.

In this work the 3 s wav files were processed as spectrograms

(using a linear frequency axis with energy represented in dB and

computed based on a Hanning window with 50% overlap) and

are used as input to the CNN. EfficientNet is originally trained

on RGB images and requires a three-channel input. Here we

present a ‘stacked spectrogram’ that takes advantage of the three

channels to increase the information available to the network for

a single input. The input channels correspond to three

spectrograms computed at three different time-frequency

resolutions (frequency bins of widths 93.75 Hz, 46.88 Hz and

23.44 Hz, corresponding to FFT sizes of 1024, 2048 and 4096 at

96 kHz sample rate). The FFT window sizes were adjusted to

ensure a consistent time and frequency spacing independent of
A

B C

FIGURE 4

Conditioning applied to COMPASS acoustic files, using exemplar data containing echolocation clicks. (A) time domain showing raw data (black
line) with positive bias (+0.01), corrected data (blue line), and data after application of 30 dB gain (magenta). (B) Raw spectrogram without bias
correction, or gain. Clicks are only faintly visible. (C) Spectrogram after bias and application of a gain, emphasizing spectral content of which the
model will detect ensuring consistency with the other data sources being used.
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the sample rates used. For convenience we refer to FFT sizes of

1024, 2048 and 4096 which pertain to the 96 kHz.

In datasets with sample rates greater than 96 kHz, the

spectrogram points corresponding to frequencies above 48

kHz were discarded, so that the CNN is only presented with

data corresponding to 0-48 kHz. A small portion of Sandown

Bay data was sampled at 48 kHz resulting in a spectrogram with

a bandwidth 0-24 kHz (n = 300). Vessel source signatures were

the only sound source category extracted from this dataset, and

this is the only portion of data within the training set sampled

below 96 kHz. For the 300 frames sampled at 48 kHz

spectrograms were created with a frequency bandwidth 0 – 24

kHz with zero padding used to maintain the consistent pixel

resolution required as the models input.

Spectrograms used to train the model each possess time ×

frequency dimensions of 1122 × 512 (FFT: 1024), 558 × 1024

(FFT: 2048) and 277 × 2048 (4096). Each color channel of the

image contains a greyscale spectrogram processed with one of

the FFT values described above, corresponding to R-1024, G-

2048, B-4096, with the FFT value corrected for the data source

sampling rate for consistency (Figure 5). All spectrograms have a

frequency bandwidth spanning 0 – 48 kHz. The portion of data

recorded in Sandown Bay sampled at 48 kHz, with an analysis

bandwidth of 24 kHz, were included in this work, with the FFT

window sizes adjusted to ensure a time and frequency spacing

consistent with the rest of the data.

Each spectrogram channel (R-1024, G-2048, B-4096) is

resized to 224 × 224 pixels and combined for the stacked

spectrogram. In this manner we ensure that the RGB value for
Frontiers in Marine Science 09
each pixel corresponds to the same time – frequency point in

spectrograms computed with different window lengths and

different sampling rates. The spectrogram values are

standardized so that they correspond to the range -100 to 0 dB.

A second training set was computed to evaluate the

performance of the stacked spectrogram. Pilot studies were

conducted using spectrograms computed using a single

frequency resolution. Three CNN models were trained, each

receiving input data computed at a single frequency resolution.

A comparison of inter-class performance between the three

models trained on spectrograms computed at specific FFT

window sizes (1024, 2048 or 4096), determined variation in

model performance for each sound source category. A combined

approach was developed, a single model is trained on input

images processed at one of the three chosen FFT window sizes

(1024, 2048 or 4096) for all acoustic files. The following sections

refer to this training set as the standard spectrogram approach.

Using the same correction process described above the full set of

3 s wav files are processed at each of the three FFT sizes 1024,

2048 and 4096, outputting three stand-alone spectrograms to be

stored as images for input. The trained model received each 3 s

frame input at three different frequency resolutions,

independent from one another. These spectrograms used the

colormap ‘parula’ to present a three-channel RGB image as

input, corresponding to the range -100 to 0 dB. This method

enhanced the training set three-fold, and was originally explored

as a form of audio image augmentation, to introduce variance

with respect to the temporal and frequency resolution of each

image produced.
FIGURE 5

Graphic demonstrating the structure of the input to the model, a 3-channel greyscale spectrogram and is resized after processing to 224x224.
Three spectrograms were produced for each wav file with different FFT size parameters as input: NFFT values were standardised for the
equivalent of 1024, 2048 and 4096 points per each sample rate with a constant frequency increment of 93.75 Hz, 46.88 Hz and 23.44 Hz
respectively. Spectrograms were computed using a Hanning window and 75% overlap. The three images were stacked within one of three color
channels of the image in order, allowing the CNN to ‘see’ each sound source represented at various resolutions.
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(iii) Model architecture

This work harnessed the power of transfer learning, using

pre-trained layers and blocks from an existing architecture to

develop a CNN pipeline, for automated sound source detection.

The network used in this work was the EfficientNet model (Tan

and Le, 2019). EfficientNet is a family of networks which use

model scaling, balancing network depth, width and resolution to

output state-of-the-art accuracies with relatively few parameters

(Tan and Le, 2019). Our work utilized EfficientNet B0 the

smallest of these networks. Using 5.3 million parameters it is

8.4× smaller and 6.1× faster than other commonly adopted

architectures (Tan and Le, 2019). EfficientNet B0 is pretrained

on the ImageNet database (Deng et al., 2009) with 1000 classes.

Figure 6 outlines the EfficientNet B0 architecture as used in this

study, the original feature extractor is left frozen, the weights and

biases determined through training on the ImageNet database

are not updated during training for this work. The final layers of

the architecture, the classifier, have been replaced through fine-

tuning and trained on the dataset developed for this work.

Fine-tuning
The final classification layers are a set of fully connected

layers, attached via a Global Average Pooling layer (GAP) which

reduces the number of features to 1280 (Figure 6). The GAP

layer takes the average of each feature map in the last

convolutional layer of the EfficientNet B0 architecture and

flattens the output of the feature extractor into a vector, which

can be used as a feature descriptor and fed into the fully
Frontiers in Marine Science 10
connected layers of the classifier. This process is described as

bottlenecking as we are summarizing the learned features in the

EfficientNet B0 architecture into a single vector to be used as

input to our classifier. The bottlenecked information is passed

through three fully connected layers with 512, 256 and 4 neurons

in sequence. Between each layer are dropout layers of 50% and

20% respectively. Dropout works by randomly setting a set

percentage of neurons in the fully connected layer to zero

during each training update, helping to generalize model

performance and avoid overfitting, important where small

training sets are being used. The 512 and 256 dense layers use

a ReLU activation function (Krizhevsky et al., 2012), a simple

function that returns the input value if it is positive or sets the

value to 0 if the input is negative. The final four neuron fully

connected layer classifies the input spectrogram into one of the

four classes, using a softmax activation function. The softmax

function outputs the pseudo-probability of an image belonging

to each of the four classes and the network assigns a label based

on the highest pseudo-probability value. The final model

architecture had a total of 4.8 million parameters, of which

788,228 are trainable and 4,049,564 remain frozen during

training updates.
(iv) Training

Data augmentation is used to enhance variance within the

training set and increase the number of inputs, without requiring

further manual annotation effort (Figure 7). From each 3 s audio
FIGURE 6

Schematic diagram of the CNN model. Transfer learning was used to build the model, freezing weights and biases from the original EfficientNet
B0 architecture, represented by the blue shaded region. White regions are fine-tuned layers, trained on our dataset. The model learns
representations of the input at each stage of the CNN, the learned features are bottlenecked in the Global Average Pooling (GAP) layer, before
being fed into the custom layers. Layer composition is described within the main text. Drop out layers were introduced to enhance the model’s
ability to generalize to unseen data. The final layer has four neurons per sound source category, with the ability to adjust this layer to new
categories of interest.
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clip in the training set, 2 additional spectrograms were created

through augmentation. The spectrograms were created by

applying one of 3 randomly selected signal transformations to

the audio before forming the spectrogram: these being pitch

shifts, time shifts, and adding noise, not limited to one per

category. Each transformation was parameterized and the

parameter value was randomly selected from a defined range.

Specifically, the factors for pitch shifting were selected between

0.5 and 1.5, time shifts are selected between -300 ms and 300 ms

and Guassian white noise is added with powers between 0 and 3

dB. Note that a limited range of time shifts were used to reduce

the possibility of the sound source moving out of the window

and in doing so changing the correct class for the clip. After

augmentation the training set increased three-fold. Table 2

details the contribution of each data source to each sound

source category.

Labelled spectrograms from each data source are combined

to form a single data set. The full set of spectrograms is divided

into three subsets, training (70%), validation (20%) and testing

(10%), Figure 2, for use in model training and evaluation.

Spectrograms are randomly isolated per class to remove the

likelihood of one sound source being underrepresented in each

of the data subsets, with respect to the imbalance in quantity

across the classes, and to prevent leakage between training and

test sets.

The model was developed and trained within the Google

Collaboratory ‘Colab’ platform using the Tesla K80 GPU,

allowing training to occur on a personal computer rather than
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relying on expensive hardware. Custom written python scripts

made use of Tensorflow and Keras (Chollet, 2018) libraries for

model architecture, finetuning of layers, model training and

testing. Training data were shown to the model in small batches

(n = 32), until the whole dataset has been revealed, one full

epoch, for mini-batch gradient descent. During training a

horizontal flip, an image augmentation method was applied

randomly to images during training (one per batch of 32). This

method does not increase the size of the training set. The image

was either flipped, or not flipped, along the horizontal axis as it is

fed into the model to increase variance.

Successful training is reliant on the successful choice of a

learning rate (Murphy, 2012); an Adam optimizer was used,

controlling gradient descent during training (Kingma and Ba,

2014). A cyclical learning rate was applied, using a learning rate

of 10-3, decaying by 0.75 every 90 steps (Smith, 2017). The loss

function used is categorical cross-entropy (Koidl, 2013). During

training, model performance was evaluated in real-time from

reported training and validation loss and accuracy values, once

per epoch, to observe the potential for overfitting. The model

was set to train for 50 epochs, but training was stopped early if

the validation accuracy and loss did not improve over 8 epochs

(early-stopping). The delay of 8 epochs was due to the

observation that improvements in model performance are

stochastic during training and it can take several epochs to

realize the potential benefit of a specific learning rate (Ruff et al.,

2021). For both training sets, the standard spectrogram and the

stacked spectrogram inputs, the model architecture and training
A B DC

FIGURE 7

Temporal and frequency domain examples of three methods of audio augmentation used to enhance variability within the training dataset. Audio
augmentation was performed on raw audio, in the time domain. (A) raw acoustic data; (B) pitch shift applied by a random factor between 0.5 to 1.5;
(C) reduction in SNR (up to 3dB); (D) time shift (between -300ms and 300ms). Augmentation maximum and minimum values introduce variance to
the training set while maintaining the spectral content within the frame. Each input audio file was subjected to two augmentations, the range of
augmentation methods and the value parameters for their implementation are randomised. Spectrograms were produced using a Hanning window,
FFT size 2048 and a 75% overlap. Augmentation increases the training set three-fold, from 13,198 to 39,594 images.
frontiersin.org

https://doi.org/10.3389/fmars.2022.879145
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


White et al. 10.3389/fmars.2022.879145
procedure were the same. The final model using the stacked

input took 64 minutes to train within Google Colab, and ran for

33 epochs before early stopping. The final model using the

standard spectrogram input trained for 41 epochs before early

stopping, taking 112 minutes to train.

Precision (P), Recall (R) and Accuracy (A) were used to

compare overall performance, as well as cross-class

performance. P and R are calculated from the number of true

positives (TP), or correct classifications, NTP, false positives (FP),

or incorrect classifications, NFP, and false negatives (FN), or

missed detections, NFN:

P =  
NTP

NTP + NFP
,                              R =  

NTP

NTP + NFN
:

A perfectly performing detector across all classes results in 1,

P=R=1. Accuracy was based on F1 scores which are used to

combine precision and recall, F1 being the harmonic mean of P

and R, with good performance indicated by values close to 1.

There are two methods for combining metrics across multiple

classes. These are: the macro-average, calculated by computing

the F1 metric for each class and then finding the unweighted

mean of those values (Mesaros et al., 2016) and the micro-

averaged scores for which the values of NTP, NFP and NFN are

accumulated across the classes and the metric evaluated using

these combined values. We plotted Receiver Operating

Characteristic (ROC) curves to summarize performance within

a class across a range of threshold levels, with the areas-under-

curve (AUC) used as a summary statistic for these curves

(Stowell, 2022). As a baseline, a random classifier is expected

to output a diagonal line on the ROC curve, that is the false

positive rate (FPR) is equal to true positive rate (TPR). For

calculating the statistical metrics Scikit-learn was used

(Pedregosa et al., 2011).
Evaluation

In this section, we evaluate the performance of the model by

investigating, (i) the effect of the CNN input on model accuracy

using in-sample test data, (ii) the effect of variable signal-to-

noise-ratio, and (iii) the effect of extreme weather conditions.
(i) In-sample test set

The first evaluation of the model was performed on the in-

sample test set, i.e. the 10% of data (n = 3959, Table 2) not seen

during the training and validation processes. The test set

consisted of 997 ambient noise images, 1295 delphinid tonal

images, 353 biological click images and 1314 vessel noise images,

totaling 3959 input images. The aim of this test was to assess the

developed model’s performance on unseen data and to validate

the use of the stacked spectrogram input developed for this
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work. The model using the stacked spectrogram input trained

for 33 epochs before stopping, reporting a loss of 0.14, whereas

the model trained on standard spectrogram inputs stopped after

41 epochs, with a loss of 0.42.

Figure 8 shows the performance of both models on the test

set with respect to the confusion matrix and the ROC curves. For

the in-sample test data set the macro-averaged accuracy for the

standard approach was 80% with a lower micro-average

accuracy of 66%, the relatively large difference between these

accuracies stems from the poor performance on the smallest

class, the delphinid clicks (Figure 8). In contrast, the results for

the network using the stacked spectrogram input had similar

accuracies of 94% (macro-averaged) and 96% (micro-averaged),

reflecting the success of this approach across all sound sources.

In particular, the stacked spectrogram outperformed the

standard approach in both delphinid classes (clicks and tonal

calls) and the ambient noise class. Both approaches make

incorrect decisions regarding the vessel noise class, the stacked

approach suffers from FNs, failing to detect the presence of a

vessel and incorrectly classifying clips as ambient noise, whereas

the standard approach has a tendency to generate FPs, mistaking

ambient noise for a vessel.

The ROC curve (Figure 8) illustrates the performance of the

network across a range of threshold values to evaluate model

performance with respect to positive detection rates. For the

stacked spectrogram approach the AUC scores are above 0.93

for all classes, maximized in the delphinid class (AUC = 0.97).

The standard spectrogram input performs poorly as a delphinid

classifier, achieving an F1 score of 0 for clicks and 0.05 for tonal

calls. The poor performance derives from it misclassifying 93%

of the images as ambient noise and labelling 87% of the clicks as

tonal calls. Supplementary Table 5 details the calculated macro-P

macro-R and macro-F1 scores for both input types, highlighting

the success of the stacked spectrogram approach for source

signals that vary dramatically in nature.
(ii) The effect of signal-to-noise-ratio

Marine datasets contain ambient noise levels which vary

depending on the local activity and prevailing weather

conditions. Classification becomes more challenging as the

SNR reduces, we explored the influence of SNR on the

behavior of the proposed method to evaluate the performance

of our model outside of the test set and in conditions reflective of

real-world acoustic data. The model was deployed, without

further training, on a set of manually selected files containing

delphinid tonal, biological clicks and vessel noise in high and low

SNR conditions, recorded at Tolsta, Stanton Banks and

Garvellachs. Note that no data from Garvellachs was included

in the training, validation or test data, representing a previously

unseen data source. The time periods for selected files from

Tolsta and Stanton Banks did not occur within, or overlap with
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the time periods used for training, testing or validation and

statistical work was carried out to ensure the distribution of each

data set are independent of one another (see Supplementary

Material). High and low SNR conditions were identified by

calculating a per frame SNR to account for variation in signal

types, using per frame ambient noise as the reference signal.

High SNR frames were defined as encounters with loud clear

signals SNR>10dB above the ambient noise level of the PAM file

from which they were extracted. Low SNR frames were defined

as signals having SNR<5dB, visually appearing to be of poor

quality in the spectrogram. See Supplementary Material for

exemplar spectrograms belonging to both high and low

SNR conditions.

For high SNR data, a macro-average of 0.95 (ROC) was

reported and a macro-average accuracy score computed at 0.91,

see Figure 9. Classification of biological clicks was high,

reporting an AUC score of 0.96 and an F1 score of 0.95

(Table 4, Figure 9A). As SNR varies in the click class the

model reported few false detections as ambient noise or vessel

noise (Figure 9A), a common issue for other detection

algorithms. Delphinid tonal calls had a lower recall compared

to clicks (0.78, Table 4), because of the method of manual

annotation for a true label; if a whistle was present the frame

is labelled delphinid tonal. During periods of high SNR the
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delphinid clicks in many frames presented visually as a stronger

signal than the whistles, the model was correctly identifying the

presence of a click signal but was penalized in the

evaluation metrics.

An accuracy of 0.87 was achieved on the low SNR data

(Table 4). Ambient noise and delphinid whistle classifications

were high, (Ambient noise: AUC = 0.93, F1 score=0.90,

Delphinid: AUC=0.96, F1 score=0.88, Table 4). No false

positives occurred between clicks and tonal calls, 18% of

whistles were missed and recorded as ambient noise as a result

of call masking, Figure 9B. Performance of biological clicks was

poor, F1 = 0.34, AUC=0.8, as a result of very low recall (Table 4,

Figure 9B). Detections missed (68%) were manually inspected

and determined to be instances of singular strong clicks or few

clicks, not present in a click train. The classification of true click

frames reported an AUC score of 0.79 (Table 4, Figure 9B).

Whistle classification thresholding was successful at low FPR,

AUC=0.96 in low SNR conditions, Table 4, Figure 9B. No vessel

noise frames were used from the selected data for this test and

are not included in Figure 9 or Table 4. Discrimination of vessel

noise and ambient noise was not straightforward, and full

analysis would need to include ship automatic identification

system (AIS) data for the testing region to identify true low SNR

vessel signatures.
A

B

FIGURE 8

Performance of the CNN on the test set (10% of the initial training data) for each of the four sound classes as illustrated using Confusion
Matrices and ROC curves for (A) Standard spectrogram input and (B) Stacked spectrogram input. The stacked input outperformed the standard
spectrogram input reporting a macro average of 0.94, compared to 0.80. Performance was high for all sound classes with the highest accuracy
for ambient noise and vessel noise which are the classes comprising the greatest proportion of the training set based on true vs predicted labels
for the stacked input. Although making up the smallest component of the training set, biological click detection remained high, with an AUC of
0.93, with false negatives in this class attributed to single click occurrences.
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(iii) Soundscape variation

The final evaluation of model performance was tested across

variable soundscape conditions at Stanton Banks, Tolsta and
Frontiers in Marine Science 14
Garvellachs. Temporal periods correlating to above average

high-pressure (HP) and low-pressure (LP) weather systems

were identified by reviewing archive weather reports for the

South Uist weather station on the Outer Hebrides (Figure 10A).
A B

FIGURE 9

Comparison of CNN performance for periods of (A) high, and low (B) signal to noise ratio, represented as receiver operating characteristic
(ROC) curves. Our model was able to classify delphinid calls with 80% accuracy in low-quality data, and 95% accuracy in high-quality data.
Reduced accuracy occured in the biological click class in low-quality data, AUC = 0.79. Manual analysis determined many missed detections are
due to singular higher strength clicks amongst low signal strength clicks. Spectrograms (A, B) were computed using a Hanning window, FFT size
2048 and a 75% overlap.
TABLE 4 Performance metrics computed for stacked spectrogram input, the standard spectrogram input, high SNR and low SNR evaluations.

Test Sound source Precision Recall F1 Score Average Macro-Average (ROC curve) AUC

Stacked Spectrogram input Ambient 0.64 1.00 0.78 0.84 0.94 0.93

Clicks 0.86 0.62 0.72 0.93

Delphinid Tonal 0.99 0.76 0.86 0.97

Vessel 0.98 0.82 0.89 0.94

Standard Spectrogram input Ambient 0.45 0.65 0.54 0.80 0.76

Clicks 0 0 0 0.60

Delphinid Tonal 0.03 0.10 0.05 0.60

Vessel 0.76 0.99 0.86 0.96

High
SNR>10dB

Ambient 0.83 0.81 0.82 0.91 0.95 0.98

Clicks 0.94 0.96 0.95 0.96

Delphinid
Tonal

0.82 0.78 0.79 0.95

Vessel 0 0 0 0.91

Low
SNR<5dB

Ambient 0.82 1.00 0.90 0.87 na 0.93

Clicks 1.00 0.21 0.34 0.79

Delphinid
Tonal

0.97 0.82 0.88 0.96

Vessel na na na na
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Two LP periods are identified, December – Storm Diedre (15th –

18th, 2018) and March – Storm Gareth (12th – 13th, 2019) with

maximum wind speeds of 71 mph and 61 mph, respectively. The

storm in December resulted in 67 mm of rainfall in contrast to

14 mm in March. The HP systems identified occurred in April

(19th – 22nd, 2019) and June (26th – 28th, 2019) with maximum

wind speeds of 32 mph and 26 mph and rainfall of 3 mm and

0 mm, respectively. The site-specific characteristics surrounding

each PAM mooring vary in water depth, bottom type and

bathymetry affecting the acoustic complexity of the

soundscape under variable weather conditions. Analysis of the

sound pressure level per site within third-octave level bands

between 10 Hz – 10 kHz demonstrated the regional variation in

ambient noise under differing weather conditions (Figure 10A).

Low frequency ambient noise was present in the wide-

bandwidth spectral input, we assessed the effect of this on

sound source detection.

Each weather period comprised differing temporal lengths in

hours, April: 32, June: 24, December: 32, March: 16 for a total

number of 38,304 (April), 28,728 (June), 38,304 (December) and

19,152 (March) input spectrograms. Human analysts manually

labelled each frame prior to model input, for comparison to

model output post detection.

Overall macro-averages were consistent across the four

seasons, ranging between 0.73 and 0.87 (Figure 10, Table 5),

with December reporting the highest average score of 0.87

(Figure 10B). Averages calculated from confusion matrices,

without macro-averaging, determined that performance in LP

conditions (Dec: 0.87, Mar: 0.85) were higher than the summer

(HP) seasons (April: 0.55, June: 0.65), Table 5. This variation

indicates per-frame variation in classification ability as a result of

soundscape diversity and reflects the unbalanced nature of the

datasets with respect to images per class skewing overall

averages. For this reason, macro-averages reported from the

ROC-curves offer a better assessment of model performance.

Within each seasonal period AUC scores fluctuate per class,

with inter-class performance consistent across each period

(Table 5, Figure 10B). Seasonality was expected to affect model

performance, with storm periods affecting the model output.

Ambient noise, our negative class, reported the highest F1 score

during the March storm period, 0.92, and the lowest in April,

0.32, with an average F1 score of 0.36 in HP systems and 0.9 for

LP systems (Table 5). Precision scores were high for ambient

noise, with an overall average of 0.83, varying between 0.78 for

HP systems and 0.88 for LP systems (Table 5). The overall

average was impacted by a low recall score of 0.24 across April

and June (Table 5), compared with 0.93 for December and

March (Table 5). Ambient noise classification accuracy is

affected by seasonal variation in soundscape characteristics

per site.

Soundscape variability due to weather conditions affects the

model’s capability to detect delphinid tonal calls in particularly

bad weather (March, P = 0.19; Table 5, Figure 10B); the severity
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of weather conditions is important to consider when interpreting

results. In the three other temporal periods, including Storm

Diedre, the model detected delphinid tonal calls with high

precision April (P = 0.98), June (P = 0.95), December (P=

0.97), indicating high confidence as a whistle detection model,

Table 5. Tonal calls score an average R of 0.92 in HP systems and

0.72 LP systems with an average F1 score of 0.94 for April, June

and December. AUC scores were high, reporting 0.99 for both

April and June, and 0.97 for December, Table 5. The detector is

effective but is skewed by seasonal and diurnal variation in

soundscape characteristics.

The ‘click’ class reported variable results across the

seasonalities, with higher F1 scores for December (0.92) and

March (0.73), than the HP systems April (F1 = 0.33) and June

(F1 = 0.38), Table 5. For April and June both P and R scores were

below 0.5, with P values highest in June (0.44), Table 5. For this

sound source class AUC scores remained high at 0.90 and 0.79

for April and June (Figure 10B). Contributing the lowest number

of training images, the click class reported an AUC score of 0.98

for December and 0.97 in March during intense storm periods

(Table 5, Figure 10B) demonstrating the capability of the

model for high-frequency sound sources in variable

soundscape conditions.

Classification of vessels varied seasonally with low AUC

scores for each period (Table 5). As a result of increased

geophonic noise during winter and storm periods, vessel P and

R scores were low in December (0, 0, respectively) and March

(0.48, 0.10, respectively), the poorest preforming class, Table 5.

High R scores in April and June were reported, 0.99 and 0.87

respectively, P scores were lower at 0.36 and 0.44 for April and

June (Table 5), determining missed detections. Vessel

classification trends in the ROC curves strongly mimicked the

ambient noise class under HP weather systems (Figure 10B),

with both sound sources affected by lower rates of low-frequency

noise in respect to spectrogram visualization. This trend was

reversed during storm periods as vessel noise detections reported

AUC scores of 0.64 and 0.45 for December and March (Table 5,

Figure 10B), while ambient noise classifications had an AUC

score of 0.91 and 0.71 (Table 5, Figure 10B).
Discussion

We provide proof of concept that transfer learning can

produce a powerful model for multi-sound source detection in

the marine domain across a wide frequency bandwidth and is

capable of mining large data sets for information of value to

ecosystem assessment and management. As the field of

soundscape ecology (Pijanowski et al., 2011) matures, and

PAM datasets grow ever larger, we present an adaptable

framework for processing acoustic data across the frequency

spectra, for the characterization of soundscape components. The

work presented here addresses the challenge of detecting
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multiple sound sources in soundscape recordings, and

demonstrates high model precision across a range of ambient

sound levels present across the varied seasons. The input spans a

large frequency bandwidth from 0 to 48 kHz, allowing the model
Frontiers in Marine Science 16
to account for many acoustic signatures within the water

column. Although only four categories of sound source are

considered here, the large acoustic bandwidth allows for

additional noise sources to be accounted for in future
A

B

FIGURE 10

Comparison of fidelity of results of the CNN for different weather conditions which produce differing ambient noise conditions per site.
(A) Median sound pressure levels for third octave bands ranging from 10 Hz to 10 kHz for Stanton Banks, Tolsta and Garvellachs within the four
weather periods selected; Low Pressure (LP) systems - December (Storm Diedre) and March (Storm Gareth), and high pressure (HP) systems -
April and June, demonstrating variation in soundscape characteristics per season and per site. (B) Performance metrics of the CNN are
represented as ROC curves. Sound source class detection accuracy fluctuates across seasonalities, with low-frequency geophony sounds
affecting the detectability of vessel noise during storm periods (AUC = 0.64, AUC = 0.45).
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iterations of model development such as seismic array guns and

Acoustic Deterrent Devices. The limiting factor in the inclusion

of these sound sources in this work is the lack of available

labelled data for anthropogenic sound sources. Due to their

consistent spectral characteristics, it is easier to develop

automated labelling systems for these sound sources compared

to biological components and further work will incorporate

regionally specific anthropogenic signals.

Evaluating the model performance on the widest range of

soundscape conditions provides an indication of likely success

when deploying the model on annual data archives. The detector

outputs high-frequency sound sources with high accuracy

(including Odontocete broadband and tonal calls). Site-specific

temporal soundscape variation affects per-frame performance

for low frequency (e.g. anthropogenic) sound sources.

Performance of the detector was expected to be high when the

signal strength is high and activity levels output multiple calls

per frame, but confidence in our method for multi-source sound

detection is high as a result of its performance per-class in poor

signal conditions. This work demonstrates the impressive

capabilities of open-source ‘small’ CNN architectures and the

opportunities for application to soundscape component

classification in marine datasets. We highlight the importance

of understanding the soundscape characteristics on which a

model will be deployed in order to trust the output,

particularly for shallow water environments.

This work presents a proof-of-concept approach to detecting

signals which occupy small areas of the image input across the

frequency spectra and continuous sound sources (e.g. vessel

noise) which vary in their temporal and frequency
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characteristics over time of their occurrence. The highly

successful capabilities of CNNs, in the presence of a small

annotated training set are invaluable for extracting valuable

ecological information from within large datasets, relevant to

marine mammal conservation and ecosystem management. We

present a new method for inputting audio to the CNN in the

form of a stacked input, using three individually processed

spectrograms within the RGB channels of the input image.

The sound sources used in this work possess differing

temporal and spectral characteristics that make defining one

set of spectrogram parameters applicable to all a difficult task.

Increasing the volume of input data by using a stacked

spectrogram approach enhanced the model performance, as

indicated by the lower loss value reported in the results.

Another study has used a similar approach for low-frequency

baleen whales, interpolating three STFT spectrograms at varying

window sizes (Thomas et al., 2019), also reporting an

improvement in performance over a one set parameter input,

emphasizing the advantage of presenting the model with more

information to learn from in the form of a stacked input.

Few previous studies have focused on multiple call types

with the incorporation of anthropogenic sound sources. A study

from 2020 classifying grouper species (Epinephelinae) by their

vocalizations presents a similar task and workflow to ours,

incorporating the detection of vessel signatures and

bioacoustic signals (Ibrahim et al., 2020). In contrast to our

work which encompasses a large spectral input for the

soundscape as a whole, Ibrahim et al. (2020) focuses on the

frequency range 10 – 400 Hz, narrowing the focus of the spectral

input to the signals of interest. As the bandwidth of interest
TABLE 5 Performance metrics computed for model evaluation in high pressure (HP) and low pressure (LP) weather conditions, demonstrating
seasonal variation.

Temporal period Sound source Precision Recall F1 score Average confusion
matrix

Macro-Average
ROC curve

AUC

2019
April
(HP)

Ambient 0.87 0.20 0.32

0.55 0.81

0.68

Clicks 0.34 0.33 0.33 0.90

Delphinid Tonal 0.98 0.89 0.94 0.99

Vessel 0.36 0.99 0.53 0.67

2019
June
(HP)

Ambient 0.69 0.28 0.40

0.65 0.82

0.78

Clicks 0.44 0.33 0.38 0.79

Delphinid Tonal 0.95 0.94 0.94 0.99

Vessel 0.44 0.87 0.58 0.78

2019
December
(LP)

Ambient 0.86 0.91 0.88

0.87 0.87

0.91

Clicks 0.94 0.90 0.92 0.98

Delphinid Tonal 0.97 0.93 0.95 0.97

Vessel 0 0 0 0.64

2019
March
(LP)

Ambient 0.90 0.94 0.92

0.85 0.73

0.71

Clicks 0.67 0.81 0.73 0.97

Delphinid Tonal 0.19 0.50 0.27 0.78

Vessel 0.48 0.10 0.17 0.45
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becomes larger the spatial coverage of a signal of interest reduces

within the input image presenting a challenge for narrow-band

signals. Our work demonstrates the success of transfer learning

in the pipeline of detecting multi-class sound sources, extending

the spectral domain and detecting signals which are present in

many frequency ranges relevant to overall ecosystem assessment.

Existing work using CNNs for the detection and

classification of delphinid signals, which classify to species

level have reported accuracies of 99.75% (Liu et al., 2018) for

echolocation clicks, 93% for both whistles and clicks of a single

species (Bergler et al., 2019) and outperform existing general

mixed model efforts (Roch et al., 2011a) achieving high

accuracies at multi-species click classification (Yang et al.,

2020), making use of larger architectures and labelled training

sets. Using an open-source ‘light-weight’ architecture and a

small annotated training set we demonstrate similar overall

accuracies of our model and in-depth exploration of seasonal

variation on model performance to present researchers with an

insight into the reliability of CNNs across annual cycles. Existing

work on CNNs typically addresses the detection of signals at

species level, whereas in this work we looked at family level.

Species level detection is invaluable to regional marine

management and presents a complex task for a CNN to

address. Our results demonstrate the ability of a CNN to

extract higher level components of the soundscape for an

evaluation of regional systems, beneficial to marine

management, policy and stakeholders. It is not possible to

directly compare the efficiency of our model to existing species

level classifiers as our approach is to analyze the broad

components of the soundscapes, arguably an easier task to

obtain higher accuracies. We note that broad level taxonomic

groups are useful in areas which lack the knowledge required for

a species-level classifier. A single CNN model will never be

suitable for all bioacoustic research needs, the need for models

which incorporate soundscape elements should be used in

tandem with complex species-level classifiers to meet the

desired research needs. The advantage of using both tonal and

impulsive call types of the Delphinid family allows for more

confident determination of their temporal presence over single

call type approaches and the methodology described here could

be adapted to more complex repertoires of other marine species.

Work that incorporates multi-sound sources is scarce at the

time of writing; Belgith et al. (2018) demonstrates the capability

of CNNs at discriminating between baleen whale calls,

odontocete echolocation clicks and anthropogenic noise

sources, through the use of custom CNN networks, achieving

overall accuracies of 66.4% with a site-specific training set. Our

work has a higher accuracy with an overall macro-average of

94% on the test set, exemplifying that with small training sets for

the detection of multi-sound sources, a multi-channel

spectrogram input combined with transfer learning of a high

performing architecture enhances model performance. We

acknowledge accuracy score comparison is not straightforward
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due to differing test metrics and training sets which cannot be

compared (Hildebrand et al., 2022). This work reports ROC

curves alongside confusion matrices to address per-class

performance for an understanding of the effect of regional

soundscape variation on performance metrics for specific

signal types.

Our work has developed a computationally low-cost

approach to mining PAM recordings for data of interest to

marine management and species monitoring. There is a demand

in the bioacoustics domain for real-time detection, and

algorithms which perform detection of acoustic signals of

interest on-board marine robotics e.g. gliders and autonomous

surface vehicles. We use EfficientNet B0, currently the smallest

architecture available for off-the-shelf transfer learning (Tan and

Le, 2019), to develop a computationally low-cost CNNmodel for

multi-sound source detection,. Other architectures such as

ResNet (He et al., 2016), VGG (Simonyan and Zisserman,

2014) and AlexNet (Krizhevsky et al., 2012) are common

choices for transfer learning within marine mammal species

detection and classification studies (Bergler et al., 2019;

Rasmussen & Širović., 2021; Allen et al., 2021; Lu et al., 2021).

These architectures possess more trainable parameters making

them computationally more expensive, and studies have shown

that larger networks do not always obtain higher accuracies

(Bergler et al., 2019). Our evaluation of EfficientNet is not

quantifiably comparable to existing work, due to the detection

of multiple sound sources rather than a binary classifier, and the

variation in spectral input. Our approach overall is

computationally efficient, despite the requirement to use three

individual spectrograms during input to achieve the best

accuracy. Performance metrics per class are high illustrating

that low-cost CNN architectures are suitable for bioacoustic

tasks, and are appropriate for embedding on board autonomous

p la t forms , enab l ing a progress ion in soundscape

characterization and species conservation with marine robotics.

The testing protocol implemented is designed to assess the

model’s ability to generalize to unseen data across temporal and

spatial scales within the COMPASS region to provide an

understanding of the reliability of model output per

deployment. Model performance varied across seasonal

extremities, with specific classes outperforming others under

differing weather conditions, likely due to the variation in

soundscapes which change over time and the introduction of

low-frequency geophony above normal levels (Figure 10A).

Limited success in detecting impulsive signals (echolocation

clicks) within high pressure systems can be attributed to the

presence of other sound sources which are visually similar to

biological clicks. Through manual review of the test data we

attribute the results to the contribution of ‘snapping shrimp’ to

the acoustic environment, which the model was not trained to

identify as a separate class. The effect of sound sources not

defined during training emphasizes the importance of

incorporating year-round data exemplars within the training
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data to develop a robust detector, particularly for the ambient

noise class. This outcome demonstrates the necessity for training

data to include seasonal variations for each site in order for any

model to learn to adapt to changing soundscapes. Garvellachs is

a geographic site subjected to high rates of snapping shrimp,

which is not found at Stanton banks or Tolsta, skewing our

model performance. Seasonal variation in ‘snapping shrimp’

presence, and fluctuating ambient noise, reduces the effect of this

in the low-pressure weather periods. Generally, for the click class

missed detections are a result of a single high strength click per

frame, followed by lower SNR clicks, but not part of a train, or

click trains that have been split across frames, a difficult task for

any algorithm to identify. Vessel detections are affected by the

relative short duration (3-seconds) of the analysis window

relative to the length of the source signature, resulting in a

lower precision than would be afforded by a longer analysis

window. Future work will aim to incorporate temporal context

to improve the detection capabilities of vessel noise in

fluctuating ambient noise conditions.

Overall, the model performed well across the seasonal

soundscapes for each class, in a range of variable SNR

conditions, reporting high precision, recall and area-under-

curve scores which outperform existing signal-processing

methods for multi-class work. This work has demonstrated the

potential of multi-channel input to CNNs particularly when

looking to detect a range of signal types and could be applicable

to the wider bioacoustics’ community. Future work will be

investigating the advantages of pooling frames as a method of

improving evaluation metrics and model sensitivity. Currently

the model is evaluated on a per-frame basis which can skew the

results when few sound source exemplars are present in a clip. A

single 3 s missed whistle frame in a 20-minute file of ambient

noise can present a poor confusion matrix as 100% of the

whistles are missed. This is an important factor to note when

assessing performance between confusion matrix statistics and

ROC, which are more robust to unbalanced datasets. The

diversity in signal temporal characteristics as noted above for

the vessel class can result in poor performance metrics as not

each 3-second frame of the vessel passing is detected, however as

long as >1 frame is detected the model can accurately detect

vessel presence.
Conclusion

This work demonstrates the capability of developing multi-

sound source deep learning models, harnessing the power of

open-source CNN architectures, and novel input methods, to

develop a low-cost framework for analyzing large marine

acoustic datasets for more than single call types with high

accuracy. We demonstrate the importance of assessing

performance across different SNR conditions and inter-
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seasonal soundscape variations, with emphasis on the need to

understand the region of deployment. Inter-annual soundscape

variation plays a dominant role in the success of automated

detection systems, trained models must account for site-specific

deviation. The outcomes of this study should encourage the

development of automated detection and classification models

which account for ‘more than a whistle’. By incorporating

multiple sound sources and moving away from a reliance on

running multiple detectors and algorithms in a multi-stage

process we can begin to account for anthropogenic and

geophonic components of the soundscape. Expansion on the

type of information we seek to extract from acoustic data is

imperative to robust ecosystem-level marine management and

will aid our efforts to monitor regional health in the age of the

Ocean Decade.
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Širović, A., Johnson, S. C., Roche, L. K., Varga, L.M.,Wiggins, S. M., andHildebrand, J.
A. (2015). North pacific right whales (Eubalaena japonica) recorded in the north-Eastern
pacific ocean in 2013. Mar. Mamm. Sci. 31 (2), 800–807. doi: 10.1111/mms.12189

Smith, L. N. (2017). “Cyclical learning rates for training neural networks,” in
2017 IEEE winter conference on applications of computer vision (WACV). (Santa
Rosa, CA: IEEE)464–472.

Solandt,J.L. (2018). A stocktake of England’s MPA network–taking a global
perspective approach. Biodiversity 19 (1-2), 34–41. doi: 10.1089/14888386.2018.1464950

Sousa-Lima, R. S., Norris, T. F., Oswald, J. N., and Fernandes, D. P. (2013). A review
and inventory of fixed autonomous recorders for passive acoustic monitoring of marine
mammals. Aquat. Mamm. 39 (1), 23–53. doi: 10.1578/AM.39.1.2013.23

Stafford, K.M., Castellote, M., Guerra, M., and Berchok, C.L. (2018). Seasonal
acoustic environments of beluga and bowhead whale core-use regions in the Pacific
Arctic. Deep Sea Research Part II: Topical Studies in Oceanography, 152, 108–120.
doi: 10.1016/j.dsr2.2017.08.003

Steiner, W. W. (1981). Species-specific differences in pure tonal whistle
vocalizations of five western north Atlantic dolphin species. Behav. Ecol.
Sociobiol. 9 (4), 241–246. doi: 10.1007/BF00299878

Stowell, D. (2022). Computational bioacoustics with deep learning: a review and
roadmap PeerJ 10, e13152. doi: 10.7717/peerj.1315.

Sugai, L., Silva, T., Ribeiro, J., and Llusia, D. (2019). Terrestrial passive acoustic
monitoring: Review and perspectives. BioScience 69 (1), 15–25. doi: 10.1093/biosci/biy147

Tan, M., and Lee, Q. (2019). “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference on Machine
Learning. (Long Beach, CA: PMLR)6105–6114.
frontiersin.org

https://doi.org/10.1016/j.apacoust.2019.02.007
https://doi.org/10.1017/S0376892912000136
https://doi.org/10.1016/j.apacoust.2006.05.007
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1145/3065386
https://doi.org/10.1098/rspb.2016.0839
https://doi.org/10.1063/1.1825269
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ecoinf.2021.101277
https://doi.org/10.3389/fmars.2017.00197
https://doi.org/10.3389/fmars.2021.719258
https://doi.org/10.3390/app6060162
https://doi.org/201808/20180823
https://doi.org/10.1121/1.2743157
https://doi.org/10.1121/1.4772751
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1016/j.biocon.2014.11.003
https://doi.org/10.1073/pnas.1101525108
https://doi.org/10.1121/10.0005047
https://doi.org/10.1121/1.3514383
https://doi.org/10.1121/1.4987714
https://doi.org/10.1121/1.3624821
https://doi.org/10.1121/1.2400663
https://doi.org/10.1121/1.4785425
https://doi.org/10.1016/j.ecolind.2021.107419
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1038/s41598-020-57549-y
https://doi.org/10.48550 /arXiv:1409.1556
https://doi.org/10.1111/mms.12189
https://doi.org/10.1089/14888386.2018.1464950
https://doi.org/10.1578/AM.39.1.2013.23
https://doi.org/10.1016/j.dsr2.2017.08.003
https://doi.org/10.1007/BF00299878
https://doi.org/10.7717/peerj.1315
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.3389/fmars.2022.879145
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


White et al. 10.3389/fmars.2022.879145
Thomas, M., Martin, B., Kowarski, K., Gaudet, B., and Matwin, S. (2020). Marine
mammal species classification using convolutional neural networks and a novel
acoustic representation. In: U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M.
Maathuis and C. Robardet(eds) Machine learning and knowledge discovery in
databases. ECML PKDD 2019. Lecture notes in computer science, vol 11908.
(Cham: Springer). doi: 10.1007/978-3-030-46133-1_18

Thomas, M., Martin, B., Kowarski, K., Gaudet, B., and Matwin, S. (2019). Marine
mammal species classification using convolutional neural networks and a novel
acoustic representation. Joint Eur. Conf. Mach. Learn. knowl. Discovery Database,
290–305. doi: 10.1007/978-3-030-46133-1_18

Vester, H., Hallerberg, S., Timme, M., and Hammerschmidt, K. (2017). Vocal
repertoire of long-finned pilot whales (Globicephala melas) in northern Norway.
J. Acoust. Soc. Am. 141 (6), 4289–4299. doi: 10.1121/1.4983685

Wang, Z. A., Moustahfid, H. A., Mueller, A., Mowlem, M. C., Michel, A. P. M.,
Glazer, B. T., et al. (2019). Advancing observation of ocean biogeochemistry,
Frontiers in Marine Science 22
biology, and ecosystems with cost-effective in situ sensing technologies. Front. Mar.
Sci. 6, 519. doi: 10.3389/fmars.2019.00519

Xie, J., Hu, K., Zhu, M., and Guo, Y. (2020). Bio-acoustic signal classification in
continuous recordings: Syllable-segmentation vs sliding-window. Expert Syst. Appl.
152, 113390. doi: 10.1016/j.eswa.2020.113390

Yang, W., Luo, W., and Zhang, Y. (2020). Classification of odontocete
echolocation clicks using convolutional neural network. J. Acoust. Soc. Am. 147
(1), 49–55. doi: 10.1121/10.0000514

Yano, K. M., Oleson, E. M., Keating, J. L., Ballance, L. T., Hill, M. C., Bradford, A. L.,
et al. (2018). Cetacean and seabird data collected during the Hawaiian islands cetacean
and ecosystem assessment survey (HICEAS) 72. doi: 10.25923/7-avn-gw82

Zhong, M., Castellote, M., Dodhia, R., Lavista Ferres, J., Keogh, M., and
Brewer, A. (2020). Beluga whale acoustic signal classification using deep learning
neural network models. J. Acoust. Soc. Am. 147 (3), 1834–1841. doi: 10.1121/
10.0000921
frontiersin.org

https://doi.org/10.1007/978-3-030-46133-1_18
https://doi.org/10.1007/978-3-030-46133-1_18
https://doi.org/10.1121/1.4983685
https://doi.org/10.3389/fmars.2019.00519
https://doi.org/10.1016/j.eswa.2020.113390
https://doi.org/10.1121/10.0000514
https://doi.org/10.25923/7-avn-gw82
https://doi.org/10.1121/10.0000921
https://doi.org/10.1121/10.0000921
https://doi.org/10.3389/fmars.2022.879145
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	More than a whistle: Automated detection of marine sound sources with a convolutional neural network
	Introduction
	Study site
	Methods
	(i) Data acquisition
	Compass
	DCLDE datasets
	HWDT
	Sandown bay
	Data annotation

	(ii) Data pre-processing:
	(iii) Model architecture
	Fine-tuning

	(iv) Training

	Evaluation
	(i) In-sample test set
	(ii) The effect of signal-to-noise-ratio
	(iii) Soundscape variation

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


