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A B S T R A C T

There has been a global shift towards intensification in the dairy sector in recent years which may have
considerable impact on the cost efficiency and economic returns of farms. Considering this, the goal of this study
is to offer an empirical analysis of the effect of variable external input use on dairy farms. Employing a novel
Activity Analysis Model (AAM), the study analysis was conducted in two distinct but complementary steps. In the
first step, we discriminated two technologies (low and high inputs) which allow us to classify a sample of dairy
farms according to their level of intensification, while in the second step, we evaluated two cost efficient frontiers
instead of assessing individual farm inefficiency scores. With this approach, we explore different technologies
within a sample of EU dairy farms. Our results, on average, shows that agricultural practices using low inputs
dominates the high input ones for farms operating on a large scale while a slight dominance of high input over low
inputs exist for small scale farmers. While we reckon that low input can be cost competitive with their high input
counterparts, we also note that regional differences do exist. Thus, showing that the significant gap between the
two discriminating frontiers depends not only on farm size but also on farm region. We found that increased cost
efficiency can reduce the negative environmental impact of EU-dairy farms while simultaneously reducing
farmers’ production costs. The results of the study can therefore provide a direction to policymakers and dairy
farmers alike as regards the efficient use of external inputs which may consequently reduce environmental
burdens associated with dairy farms.
1. Introduction

The dairy farms in Europe in the last few decades have seen an increase
in the use of external inputs like concentrates, fertilizer or crop protection
products (Maet al., 2018). Thismightbedue toan increase in thenumberof
dairy cows per hectare of land (Foote et al., 2015; Mounsey 2015;Ma et al.,
2018) thereby resulting to changes in the techniques of production.
Changes in production system has been attributed to a range of factors,
which include enhancing productivity, overcoming pasture deficits and
improving competitiveness (Ma et al., 2018). Most of these dairy farms are
therefore increasingly not able to cover their on-farm feed resource need,
thus increasing their susceptibility to rely heavily on the use of external
(off-farm) inputs (Horn et al., 2014). While it is possible to achieve higher
farm production by using more inputs, questions are also being asked as to
whether such increase results from the efficient use of available resources in
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a cost-minimizingway.This isparticularly important given the contribution
of the dairy sector to social, economic and environmental issues like
nutrient imbalances, water and air pollution and biodiversity losses (Cav-
iglia-Harris, 2005; Leip et al., 2015; Adenuga et al., 2018a). Although, the
use of high external inputs might contribute to achieving higher technical
efficiency and consequently improvement in dairy productivity, it does not
necessarily improve profitability (Kebreab et al., 2001; Bijttebier et al.,
2017; Ma et al., 2018). The impact on profit or cost efficiency will depend
more on the relative prices of inputs used and outputs produced (Kebreab
et al., 2001; Bijttebier et al., 2017; Ma et al., 2018).

On the other hand, while research has shown that the use of low input
technologies (hereafter LIT) in dairy farms might be desirable from the
perspective of environmental sustainability, the extent of their economic
competitiveness when compared to farms that employ high input tech-
nologies (hereafter HIT) require further investigation. Hence, concerns
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arising from the negative consequences of production intensification
demands extra attention due to the importance attached to achieving
environmental sustainability. This is because, while most farms might be
efficient in terms of input-output productivity as a result of intensifica-
tion, there are reasons why they might not be efficient from an envi-
ronmental point of view (Adenuga et al., 2018b; Tyteca, 1996). Dairy
farms generally contribute to greenhouse gas emissions (GHG-e), arising
mainly from enteric methane and urinary nitrogen deposition on pasture
(Adler et al., 2015). The high nutrient surpluses from dairy farms due to
high intensification can also increase the vulnerability of soils to leaching
which can lead to significant ecological impacts, constituting potential
risk to ground and surface water quality (Adenuga et al., 2019). In this
manner, dairy farming is under pressure to avoid the use of excessive
external input to maintain soil fertility and biodiversity and to reduce
GHG emissions (Peterson and Snapp, 2015). Currently, there are limited
knowledge on the extent to which intensification affects the cost effi-
ciency of dairy farms. This paper addresses this research gap by analyzing
the cost efficiency dominance between LIT and HIT dairy farms across
different regions in the European Union (EU) using a novel Activity
Analysis Model (AAM). The methodology allows the exploration in terms
of classification and comparison of different types of dairy farming
techniques which distinguishes two cost optimal benchmarks for systems
that are respectively defined with high or low external input technology.

Previous study by VanMeensel et al. (2017) on the competitiveness of
low input dairy farms has shown that dairy farming in the EU is far too
heterogeneous (Van Meensel et al., 2017). There exists a relatively good
degree of variability in farm efficiency across regions because of differ-
ences in soil quality, farming practices, attitude and geographical climate
(Dong et al., 2016; Jiang and Sharp 2015). In this study, we assess the
prospects of technological heterogeneity from the perspective of EU-wide
dairy farming systems. Specifically, we analyzed the cost efficiency dif-
ferentials between LIT and HIT dairy farms for countries that are the
main producers of cow milk in the EU. These countries include Germany,
France, United Kingdom, Netherlands, Poland, which together (with Italy
and Ireland) account for three quarters of total EU dairy production (EU
Dairy farms report, 2018). The results of the study will be useful in
assisting farmers with adjusting their farming practices sustainably and
assist policy makers with the design of efficient farm policies.

To the best of our knowledge, this study provides the first attempt to
empirically study the impact of high or low levels of external input use on
cost efficiency dominance in dairy farms across different countries in
Europe employing the AAM. Most traditional frontier models typically
assume that the underlying production technology is the same for all
decision-making units (DMUs) without accounting for heterogeneous
technologies that exist among the different production units (�Cechura,
2010; Barath and Ferto, 2015). This assumption is unrealistic in practice
because of the differences in resource accessibility/use, institutional
environment and development stage of the economy. This is particularly
the case for dairy farming in the EU, where low input technologies may
differ substantially from their high inputs counterparts with regional
differences also existing between countries (Bijttebier et al., 2017). Thus,
cost efficiency estimates might be overestimated, and conclusions that
are based on these models might be biased. In this study, we employed a
novel AAM model which takes into consideration the heterogeneity
among DMUs by redefining the dairy farms production technology given
a level of external input cost (EIC) per grazing livestock unit (GLU).

The number of dairy cows is a critical input affecting milk production.
Using some livestock unit coefficient (dairy cows - 1.0, under 1 year old -
0.4, 1 or less than 2 years old - 0.7, beef and other cows 2 years and over-
0.8), we convert the number of dairy cows to their corresponding Grazing
Livestock Units. Thus, GLU (used as a denominator) in combination with
EIC (as the numerator) forms a categorizing indicator to identify LIT and
HIT across EU dairy farming systems. In our application, we select GLU as
another input (alongside the EIC) in order to explore the different tech-
nologies in terms of cost and also to include farm size covering all animals
producing milk, milk products and their replacement cattle.
2

The originality of this paper is based on several elements. Firstly,
since the selected criterion for distinguishing the two technologies was
the level of EIC per GLU, it is worth noting that this indicator was
exogenously treated. This means that the definition of the technology
focused uniquely on the operational inputs that directly influence out-
puts. Therefore, the operational cost regroups components of cow cost
such as cost of contract work, machinery hire, upkeep, car expenses and
other specific livestock costs such as medicines, artificial insemination,
castration, milk test, products for cleaning livestock, storage costs etc.
and other intermediate inputs, but excludes expenses included in EIC
(concentrated feeding stuff, fertilizer and soil improvers) explicitly.
Secondly, instead of evaluating each observed dairy farms, exploration of
technologies in terms of cost was established for different livestock mixes
(specific to the countries explored in EU-dairy farming system) and
several levels of size of the simulated production plans. With this, we are
able to assess all of the cost functions in their respective size and country-
specific orientation. Thirdly, it was very crucial to take into consideration
the comparison of similar farming systems across the different parts of
Europe due to the differences in external input use. As such, we explicitly
introduce the concept of Hamming Distance (hereafter HD) to control the
similarity of farming practices in the different countries when including
farms in the AAM. In this way, we endogenously introduced the concept
of HD in the linear programs to estimate the HIT and LIT minimal costs.
This approach guaranteed that the optimal solution would have a similar
comparison of the different dairy practices in the EU countries explored.
Lastly, we adapted our cost model to a robust frontier approach to reduce
the sensitivity of the cost frontier to the potential influence of outliers.
Thus, instead of developing the usual econometric approach, cost frontier
estimations were conducted empirically using AAM that imposes few
assumptions on the production set and does not require any specific a
priori functional form for the cost benchmark. This AAM allowed the
assessment of the cost dominance between two different technologies
characterized by different levels (sizes) of EIC per GLU.

The objective of this study is therefore to minimize the cost of pro-
ducing milk using EIC per GLU as a discriminatory variable to distinguish
our sample of EU-27 dairy farms into two unique technologies (LIT versus
HIT). With this, we are able to explore high and low levels of variable
external inputs use for different farm sizes and countries in the European
Union (EU).

The rest of the paper is structured as follows: Section 2 outlines the
existing literature and theoretical framework of dairy farms efficiency
measurement. Section 3 describes the methodology used to assess the
cost dominance between the two specified technologies (HIT and LIT).
Empirical results are reported in section 4 and discussed in Section 5
while the final section concludes.

2. Literature review and theoretical framework

The relationship between intensification and production efficiency in
dairy farms have been analyzed in few studies. Ledgard et al. (2004) for
instance showed that increased intensity of production in dairy farms
contributed to increase in economic and production efficiency but also
resulted in decreased environmental efficiency. Similarly, Last, Hallam
and Machado (1996) measuring production intensity as “the amount of
feed intake per cow” found greater level of efficiency for high intensity
dairy farms compared to the low intensity dairy farms. However a con-
trasting result was obtained when they measured intensity in terms of the
“numbers of cows per hectare”. Also Ma et al. (2018) using a fixed effects
stochastic production frontier model and a balanced panel of 257 farms
from 2010 to 2013 estimated the impact of feed use intensification on the
technical efficiency of New Zealand dairy farms. Their technical effi-
ciency results showed that New Zealand dairy farms is positively and
significantly influenced by feed use intensification, herd size and milking
frequency. With the use of farm business data, Ma et al. (2018) employed
an econometric approach -the augmented inverse-probability weighted
(AIPW)- to assess the impact of three types of dairy farming systems on
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milk production and financial performance of dairy farms. Their study
showed that higher input system significantly perform better physically
(but not financially) than lower input systems.

While most of the reviewed studies have focused on the relationship
between feed use intensification and technical efficiency, only a few
empirical studies have measured the impact of feed use intensification on
cost efficiency. An example of such study is Alvarez et al. (2008) in which
they estimated the relationship between farming intensity and cost effi-
ciency using stochastic frontier approach. They utilized cluster analysis
to classify farms in their sample by level of farming intensity and
consequently estimated independent stochastic cost frontiers for each
group of farms to calculate their levels of efficiency. They concluded from
their study that intensive farms were more efficient than extensive farms
thus, suggesting a positive relationship between intensification and
efficiency.

To assess the efficiency of dairy farms, previous studies have
employed either the parametric approach such as the stochastic frontier
analysis (e.g Latruffe et al., 2004; Alvarez al. 2008; Jiang and Sharp 2015;
Dong et al., 2016; Adenuga et al., 2019) or the nonparametric approach
such as the data envelopment analysis (DEA) (e.g. Jaforullah and
Whiteman 1999; Fraser and Graham 2005; Rouse and Chiu, 2009; Ade-
nuga et al., 2018b). Both methods have their strengths and weaknesses.
For example, while the parametric approach is able to take stochastic
noise in the data generation process into consideration, it fundamentally
requires a specific functional form for the frontier. As a consequence and
due to potential misspecification error, this might result to biased results
(Picazo-Tadeo et al., 2011). On the other hand, the nonparametric
approach does not require the specification of a functional form and the
technological frontier represents best practices, while the distance to it
from each DMU in the sample is used to compute a measure of its relative
performance (Picazo-Tadeo et al., 2011; March et al., 2016). However, it
does not account for any stochastic variance from the frontier and at-
tributes all deviations from the frontier to inefficiencies. As such, it can
produce results that are susceptible to the influence of potential outliers,
which can easily bias the cost function estimation (Aragon et al., 2005;
Barath and Ferto 2015). However, this deficiency can be minimized
through content-based plausibility checks and efficient data management
(Cazals et al., 2002; Adenuga et al., 2018b).

This paper employs a nonparametric Activity Analysis Model (AAM)
that involves the use of linear programming methods to construct a
nonparametric frontier over the data. As originally developed by Koop-
mans (1951) and Baumol (1958), the approach modelling technique is
ideal for modeling a production technology that has multiple inputs and
outputs. The AAM literature has subsequently grew exponentially under
the DEA label for measuring technical efficiency. Based on a more
engineered approach rather than a pure statistical one, it is considered a
useful alternative to econometric models. Thus, the main advantage of
AAM is that it permits the estimation of cost functions without specifying
any functional form between inputs and outputs. On the other hand, the
non-parametric nature of the model avoids confounding the mis-
specification effect due to an arbitrary choice of functional forms of the
technology and the inefficiency components. The meta-frontiers analyt-
ical technique is another methodology that can be considered in a study
of this kind given that it cuts across different regions. For example, Leung
and Sharma (2001) employed the stochastic-meta production frontier
analytical technique to examine the inter-country differences in the
levels of technical efficiency of semi-intensive/intensive and extensive
carp pond culture systems among the major carp producing countries in
South Asia. Similarly, Battese, et al. (2004) employed the meta-frontier
analytical technique to analyze the technical efficiency measurement of
garment firms in five different regions of Indonesia. They proposed a
stochastic meta-frontier using pooled data from all study regions to draw
the frontier. However, the use of the methodology assumes that the data
used for analysis is comparable across regions. This is a very strong
assumption that is difficult to justify and could result in bias estimates
given the inherent differences and the lack of comparable data across
3

countries (Lau and Yotopoulos 1989; Moreira and Bravo-Ureta, 2010;
Chen and Song, 2008).
2.1. Defining low input technologies (LIT) and high input technologies
(HIT)

The relevance of different technologies geared towards estimating
technical efficiency and technological change in the dairy sector has been
emphasized in a growing body of literature (Alvarez and del Corral,
2010; Alvarez et al., 2012; Sauer and Morrison Paul, 2013). In general,
the few dairy studies that have adequately addressed the issue of farm
heterogeneity (i.e., the presence of different technologies in a sample)
have used expert knowledge to segregate the sample based on some
specific characteristics. For example, Hoch (1962) divided his sample of
Minnesota dairy farms into two groups based on where the farms are
located while Bravo-Ureta (1986) classified his sample of farms based on
herd breed. Tauer (1998), Katsumata and Tauer (2005) estimated
different cost functions for farms using alternative milking systems.
Newman and Matthews (2006) estimated independent stochastic dis-
tance functions for specialized and nonspecialized dairy farms. Adenuga
et al. (2018b) computed the environmental efficiency in dairy farms
separately for the two regions of Ireland and Northern Ireland using the
directional output distance function approach. Alvarez et al. (2008) used
a cluster analysis to classify the sample of dairy farms according to their
level of intensification. Some other studies have differentiated the LIT
and HIT farms on the basis of input ratios. For example, the Centre for
European Agricultural Studies (CEAS) and European Forum for Nature
Conservation and Pastoralism (EFNCP) classification (CEAS/EFNCP,
2000) is constructed based on different indicators like fertilizer use,
concentrate feed, farm size, herd size, breed, milk yield, livestock density
etc. Bijttebier et al. (2017) distinguishes LIT from HIT farms by using the
ratio of external input cost to grazing livestock unit. Based on this
concept, 25% dairy farms with the lowest value for the ratio are defined
as LIT and the 25% farms with the highest value are specified as HIT. The
farms in between represent the medium input (MI) group. The 25% cut
off value is selected arbitrarily to create more distinct LIT and HIT groups
which are less influenced by the MI farms and consequently allow for
better comparisons between the groups, looking at competitiveness and
strategies applied.

On the other hand, Boussemart et al. (2016) categorized LIT and HIT
farms based on the ratio of external input (pesticide) per utilized agri-
cultural area. The approach assumes that when the ratio of the external
input per hectare of each observed farm is greater than the average of the
ratio of all farms, then such farms are categorized as operating under HIT
while it is LIT when each observed ratio is less than the average.
Following Boussemart et al. (2016) and in view of our objective to
explore the impact of variable External Input by farm size in EU-dairy
farming systems, we used the ratio of external input costs per grazing
livestock unit to discriminate the two technologies.

Why the assumption that efficiency is linked to the number of animals
may not always be true due to differences in the use of production
technologies and style of farm management practices (including other
factors beyond the control of the farmers), it is employed in this study as a
basis for distinguishing the farm types. This enables us to differentiate the
two technologies considered based on their intensification levels in line
with the study objective. The external input costs comprise costs for
fertilizer, crop protection and purchased feed while the grazing livestock
unit cover all animals producing milk and milk products and their
replacement cattle and this is basically used in the exploration of the two
technologies by farm size. Based on the ratio between these two com-
ponents (EIC and GLU), both LIT and HIT farms are differentiated to give
insight into how dairy farms characterized by low input use differ from
farms that relatively use more inputs with a further exploration of how
this differentiating profile might differ by farm sizes across dairy farms in
Europe.
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3. Methodology

It is essential to keep in mind that the main objective of this paper is to
minimize the operational cost of producing litres of milk using EIC per
GLU as a discriminatory variable to distinguish our sample into two
unique technologies while keeping the level of milk production on the
farm constant. Hence, we measure the gap between the two minimal
costs for the same level of milk production in order to assess the cost
dominance in operational input uses with respect to dairy farming sys-
tems having high and low external input levels.

This section therefore explains the AAM/DEA linear program. A
production technology T is defined as the transformation of ‘C and E
inputs’ into ‘O’ output for a number of ‘N’ dairy farms under two different
technologies. We assume that ‘N’ dairy farmers, 1{¼א , …, N} face a
production process with ‘O’ outputs 1{¼ס , …, Ο}, operational inputs C
¼ {1, …, C} and non-operational inputs (external inputs) E ¼ {1, …, E}.
We denote y ¼ ðy1;…; yOÞ 2 RO

þ as the vector of observed output quan-
tities, X ¼ ðX1;…;XCÞ 2 RC

þ is denoted as the vector of operational input
quantities and x ¼ ðx1;…; xEÞ 2 RE

þ the external inputs. Finally,w ¼ ðw1;

…;wCÞ 2 RC
þand w ¼ ðw1;…;wEÞ 2 RE

þ are respectively operational and
non-operational input prices. Following Kuosmanen et al. (2006) and
Shephard (1953), the production possibility set of all feasible inputs and
outputs vector is defined as follows:

T ¼�ðX; x; yÞ 2ℝCþEþO
þ : ðX; xÞ can produce y

�
(1)

Given a level of external input cost per grazing livestock unit, equa-
tion (1) above is used to evaluate cost efficiency1 of the dairy farmers
under investigation. This is done using an Activity Analysis Framework
while we avoid the use of the usual framework by redefining the pro-
duction technology given a level of external input cost per grazing live-
stock unit.

TðLÞ¼�ðX; x; yÞ 2ℝCþEþO
þ : ðX; xÞ can produce y given L

�
(2)

The indicator signifying the ratio of external input cost per grazing
livestock unit will therefore enable us to differentiate the two technolo-
gies based on their intensification levels TðLÞ. By substituting TðLÞ with
TLITðLÞ and then with THITðLÞ, it connotes the technology that defines
intensification based on low and high levels of external inputs respec-
tively. The technology TLITðLÞ contains observed DMUs in the data set
using low external input per grazing livestock unit relative to a given
intensification level while on the other hand, the technology THITðLÞ is
made up of observed DMUs that has an equal or higher ratio of external
inputs per grazing livestock unit relative to a given intensification level.
The given level of intensification is measured as the averages of all the
observed farm both at aggregate and country levels. Equations (3) and
(4) below are solved in order to explore the entire two cost functions over
their whole domain by varying the dimensions of the farm sizes and their
regional differences. Thus, for the same level of output, comparing the
equations helps to assess the cost dominance in relation to external input
use in dairy farming systems with high and low external input use. The
solutions to the equations result in the estimated minimal costs, ~CLIT and
~CHIT for every production plan b. For each λn 6¼ 0, DMU n forms a part of
the optimal linear combination which minimizes cost of plan b and is
therefore deemed as a benchmark reference that defines the cost
function.
1 Cost efficiency deals with the minimized cost of utilizing all the operational
inputs (components of cow cost and other intermediate inputs) to produce a
given level of output. This enables us to explore the cost dominance between
HIT and LIT with the use of an exogenous EIC per GLU indicator.

4

min
λ;

~CLIT ¼
n2N

λnCn

X

X

n2N
λnyno � ybo;8o 2 O

X

n2N
λn ¼ 0; 9In > I

X

n2N
λn ¼ 1

λn � 0;8n 2 N

(3)

min
λ;

~CHIT ¼
X

n2N
λnCn

X

n2N
λnyno � ybo;8o 2 O

X

n2N
λn ¼ 0; 9In < I

X

n2N
λn ¼ 1

λn � 0;8n 2 N

(4)

The technologies defined from an observed sample of ‘N’ farms as
detailed above are used in the estimation of the operational cost function
which involves solving the linear programs in a bid to retrieve the esti-
mated minimal cost functions of the two technologies TLITðLÞ and THITðLÞ.
3.1. Accounting for size and regional differences

In the event of comparing similar farming systems from both the size
and regional perspectives, it is pertinent to consider the production
heterogeneity among dairy farms. Programs 3 and 4 specifically departs
from a traditional perspective of efficiency analysis and aims at
comparing two minimal cost functions. This infer that instead of
exploring individual farm inefficiency scores, we rather evaluate the gap
between two efficient frontiers. Following the main goal of this research
which is to evaluate the impact of variable External Input Cost per
Grazing Livestock Units on EU dairy farming systems, we compare two
efficient benchmarks. These two technologies are specific to each eval-
uated farm as it appears in programs (3) and (4). The notations TLITðLÞ
and THIT ðLÞ indicate that all DMUs do not face the same production
system and this contradicts the usual assumption of traditional DEA.
Comparing these two production systems for the same level of output
helps in the assessment of cost dominance in relation to the use of
external input in dairy farming systems and thereby, accounting for the
size and regional differences across the EU-27 dairy farming systems.

In this study, we employed the HD concept to limit the degree of
heterogeneity across EU dairy farms. Although, this concept has pro-
duced reliable result in the crop sector as used by Boussemart et al.
(2016), we explored its first use in the dairy sector with the aim of
contributing to the literature from a methodological point of view. This
HD concept is derived from fuzzy set theory (Kaufmann 1975) to evaluate
the proximity between two production plans a and b belonging to TLITðLÞ
or THIT ðLÞ according to their respective livestock structures.

Hamming distance2 is measured by the sum of absolute deviations
between two vectors defined on livestock units partition. For example,
for DMUs b and c:HDðb; cÞ ¼ P

o2O

��sob �soc
�� Where so is the share of each

livestock units in total livestock. Hamming distance has a maximum
value of 2 when b and c are characterized by entirely different profiles of
livestock units and a minimum value of 0 when the shares of all livestock
2 Using the Hamming distance, we group together farms that are very likely to
have the same profile of External Input Use not only because they have the same
production mix but because of the heterogeneity issue across different countries
in EU-dairy farming systems. This would then lead to a uniform reduction in a
similar bundle of External Input Use in these heterogenous dairy farms.
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units are the same. So, if HD has a value of 0.2, it means 10% of its profile
occur in different livestock units when comparing DMU b to DMU c.

By introducing the total livestock revenue asR ¼ P
o2O

poYo in place of

‘O’ output constraints and adapting cost models (3) and (4), we therefore
have the following linear models (5) and (6):

min
λ;Sþ ;S�

~CLIT ¼
X

n2N
λnCn

X

n2N
λnRn � Rb

X

o2O

X

n2N
λnGn

o ¼
X

o2O
Gb

m

X

n2N
λnGn

o ¼ Gb
o þ Sþo � S�o ; 8o 2 O

X

o2O

�
Sþo þ S�o

� � HD
X

o2O
Gb

o

X

n2N
λn ¼ 0 if 9 Ln > Lb

X

n2N
λn ¼ 1

λn � 0; 8n 2 N

(5)

min
λ;Sþ ;S�

~CHIT ¼
X

n2N
λnCn

X

n2N
λnRn � Rb

X

o2O

X

n2N
λnGn

o ¼
X

o2O
Gb

m

X

n2N
λnGn

o ¼ Gb
o þ Sþo � S�o ; 8o 2 O

X

o2O

�
Sþo þ S�o

� � HD
X

o2O
Gb

o

X

n2N
λn ¼ 0 if 9 Ln < Lb

X

n2N
λn ¼ 1

λn � 0; 8n 2 N

(6)

To keep the linearity of the programs in (3) and (4), Hamming Dis-
tance constraints is introduced into programs (5) and (6), thus programs
(5) and (6) can be solved with standard LP solvers. In order to limit the
degree of heterogeneity between observations, we then add a constraint
on the maximum tolerated Hamming Distance to the standard cost
frontier models. The constraint

P
n2N

λn ¼ 0 if 9 Ln > Lb and
P
n2N

λn ¼ 0 if 9

Ln < Lb means that the technologies are not the same when the observed
DMUs (b) in the data set are using low or high level of external input per
grazing livestock unit than a given intensification level.

In terms of the different profiles of the livestock categories, the
models in our application considered only one single aggregated output
but include 13 specific livestock unit constraints and one total livestock
units of all the observed farms (G) which are solved with the use of
programs (5) and (6). The empirical applications compares cost functions
estimated for similar livestock profile which was guaranteed through the
introduction of the HD criterion. Sþo and S�o are respectively positive
and negative slack variables associated with the o constraints on the
livestock categories. The possible closest degree of proximity in the
sample is indicated by the exogenous Hamming distance. This connotes
that if HD ¼ 0, then the cost function is defined only as a DMU which has
exactly the same livestock category than the evaluated production plan. If
a tolerance of HD ¼ α, is accepted, it means the cost function relies on
referenced DMUs which have a maximum of α

2% difference in livestock
units shares. Hence, an increase in α will result to a reduced DMUs that
will be able to define the technology that are comparable in terms of
5

livestock mixes. Lastly, assuming HD ¼ 2, this will infer that all observed
DMUs will be included in the technologies TLITðLÞ and THIT ðLÞ irre-
spective of their livestock mixes compared to the evaluated production
plan. In that case (5) and (6) will return to (3) and (4) respectively.

Estimations from equations (3)–(6) can be biased when outliers are
present. Therefore, to obtain the most robust estimates, different
nonparametric model specifications have been used. In order to take into
account heterogeneity and exogenous factors in dairy production and
using Monte Carlo simulations, we computed the expected minimal cost
in a robust way. This involves a selection of a large number of sub-
samples from the reference sets of the two technologies which allows
the resampling and computation of the minimal cost. This is estimated as
the average of the successive minimal costs computed over all the pre-
vious sub-samples. The reference set then changes over the different
samples and the evaluated DMU is not constantly benchmarked against
potential outliers which can sometimes be present (or not) in the sub
reference set. The final average cost can therefore be interpreted as the
expected minimal level of cost needed to reach the observed output level
(Simar et al., 2016).

Here, we describe the computational algorithm in the case of the
technology THITðLÞ, for a given evaluated production plan ‘b’ which is
characterized by its total output value Rb and its livestock unit category
sb ¼ ðsb1;sb2;:::;sbOÞ, we define a sample b of size P with replacement drawn
as follows:

ΛHIT
b;P ðLÞ ¼ fðCn; Rn; sn; LnÞ : Ln � L; n 2 Kg (7)

Afterwards, the minimal cost is now defined on the sub-sample
ΛHIT
b;P ðLÞ and then computed following equation (6). Lastly, where B is

the number of Monte-Carlo replications, we repeat this for b ¼ 1 … B,
therefore our final minimal cost is computed as:

~C
HIT ¼ 1

B

XB

b¼1

~C
HIT
b;P (8)

In order to compute the two minimal expected costs ~C
LIT

and ~C
HIT

, we
duplicate the same procedure for the alternative technology TLITðLÞ.
Under these robust cost frontier, two main parameters ‘B’ (number of
replications) and ‘P’ (size of the sub-samples) are introduced to measure
the minimal costs. The value of P tending to infinity would mean that the
usual non-robust minimal costs would be recovered since all DMUs have
the tendency to be included in each sub-sample. This invariably connotes
that the cost functions are evaluated on all production plans of the initial
reference sets. Following Dervaux et al. (2009), we opted for a relative
value as a percentage of the sub-sample size and this guarantees the same
proportion of observations in each sub-sample used in the ‘B’
replications.

3.2. Data exploration

For this study, data for 2011 of specialized dairy farms from Six EU
countries which include Germany, France, UK, Netherlands, Poland and
Belgium were obtained and used for analysis. While the first five coun-
tries are included because they represent the top producers of milk in the
EU, Belgium is one of the four important partner countries involved in the
SOLID (Sustainable Organic and LI Dairying) project (http://www.soli
dairy.eu/). The European FADN dataset includes farm accountancy
data of 27 member states of the European Union for the period of 2004
until 2013. Within this period, the year 2011 was selected because the
prior discriminatory variable ‘external inputs per grazing livestock units’
used to distinguish the LIT versus HIT farms was representative for the
observed trend during 2004 and 2013 (Bijttebier et al., 2017). The
database from the European FADN of technical and economic indicators
enables us to analyze and compare the performances of 4570 specialized
dairy farms throughout Europe. The farm technology was specified using
one global output (milk) which aggregates 13 sub-output units (defined

http://www.solidairy.eu/
http://www.solidairy.eu/


Table 2
LIT and HIT farms of top producers of cow milk from EU 27 countries.

Countries Number of
farms in LIT

Number of
farms in HIT

Total Number
of farms

Germany 588 502 1090
France 310 257 567
UK 141 138 279
Netherlands 75 150 225
Poland 212 163 375
aBelgium 109 38 147
Total number of farms in
the 6 Countries

1435 1248 2683

EU 27 2471 2099 4570

a Access to data and the research institute where this project was carried out
was in Belgium. More so, Belgium and UK are important partners of the Sus-
tainable Organic and LI Dairying (SOLID) project.
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by their GLUs) and this include: other cattle (less than 1yr), male cattle (1
to less than 2years), female cattle (1 to less than 2years), male cattle (less
than or equal to 2 years), breeding heifers, heifers for fattening, dairy
cows, cull dairy cows, other cows, goats (breeding female), other goats,
ewes and sheep.

To account for the gaps in the cost-efficient frontier between LIT and
HIT dairy farms, components of cow cost, land and labour cost are chosen
as the three main operational inputs while EIC is composed of concen-
trated feeding stuff, fertilizer and soil improvers. As regards land cost,
rent paid per hectare is linked to utilizable agricultural area (UAA)
including owned land as there is no other land cost available in FADN
which is not already included in the operational costs. Paid labour price
per hour on the other hand, is associated with total hours of labor since
there are no convenient labor costs associated with family labour. A price
per dairy cow is associated with the number of dairy cows. This price
consists of all costs not included in the other input costs. In this study, the
economic output from beef and veal is not considered as an output and so
deducted from the costs that determines the dairy cow price. The de-
nominator of the discriminating indicator that is GLU is selected as
another input to include farm size and it cover all animals producing milk
and milk products and their replacement cattle. Indeed, more cows have
the possibility to produce more milk, ceteris paribus, so the number of
dairy cows, is a critical input affecting milk production. This therefore
drives our motivation for converting the number of dairy cows to live-
stock units as used in this paper. The components of cow cost include cost
of contract work, machinery hire, upkeep, car expenses and other specific
livestock costs such as medicines, artificial insemination, castration, milk
test, products for cleaning livestock, storage costs etc.

4. Results

This section addresses the comparison and evaluation of the cost
dominance of low input over high input technology in heterogeneous EU-
dairy farms or vice versa.

Table 1 shows the extent to which farmers in the different EU coun-
tries rely on external inputs to carry out their farming practices. The
share of external input in total costs is relatively high in Poland, UK,
Germany, and France but relatively lower in Belgium and Netherlands
with just 27 and 28 per cent, respectively.

The number of farms contained in LIT and HIT categories are pre-
sented in Table 2. Overall (EU-27), the total number of farmers operating
under the LIT are more than those in the HIT category but this differ
significantly by countries. Hence, the different country specifics and
number of farming practices in each category reveal the heterogeneity in
European dairy farming system as shown in the FADN data used for this
analysis.

The six selected countries displayed in Table 2 shows and confirms
that the top producers of milk have a large sample size which is more
than half of the total number of farms in EU.

Given our sample, the aggregate external input cost per grazing
livestock unit of all the observed farms as seen in Table 1 is €652. Overall,
the LIT farms were estimated on 2471 dairy farms that used less external
input than €652, while the HIT farms relied on 2099 dairy farms that
Table 1
Cost components and their corresponding output mean values
(OC¼ Operational Cost; EIC ¼ External Input Cost; GLU ¼ Grazing Livestock Unit).

Country Output Value (milk)
(€’000)

OC (€’000) EIC (€’000) Total Cost (€’000)

EU 27 193 144 80 224
Germany 207 149 88 237
France 132 110 51 161
UK 339 185 150 335
Netherlands 319 252 98 350
Poland 76 31 31 62
Belgium 156 142 54 196
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utilized more external input than €652 (Table 1 and Fig. 2). However,
these values differ significantly across the understudied EU countries
thereby taking into account the regional orientation employed in this
paper. Hence, a value of 0.2 was chosen as the Hamming Distance cri-
terion to analyze the entire EU-27 dairy farms as well as the regional
differences. By this tolerance, the best cost practices were selected.
Finally, the two robust cost functions were estimated for A ¼ 100 repli-
cations of each simulated production plan with a M parameter equal to
75% of the initial sample. The two-average cost curves were then
compared to assess the dominance of the two technologies.

Table 3 shows that the components of cow cost appear to be com-
plementary with the level of external input use. This indicates that a
lower level of input use induces a less intensive technology in the main
elements of direct cost. Otherwise, the LIT seems to use a little more
labour than HIT especially in Germany, UK, Netherlands, and Poland.
Although this gap does not seem important for Germany since the cost
difference between their two technologies is due to 45 percent savings in
intermediate consumptions. As expected from both the whole sample and
country levels, farms operating on HIT pay a lower amount on rent
compared to their LIT counterparts.

4.1. Size dimension: Exploring all EU-27 dairying by farm size

Overall, the result in Fig. 1 shows that LIT is more cost competitive
than HIT for the simulated points between 135 and 275 grazing livestock
units but considering the simulated points between 55 and 134 grazing
livestock units, there is a slight dominance of HIT over LIT farms.

Thus, low input farming exceeds high input farming for all the EU-27
farms and this could pose an argument that a farmer who prioritize cost
efficiency would also seek to reduce the use of external inputs as a means
of improving gross margins. Thus, in conformity with the usual U-shaped
average cost curve, the HIT farms present an optimal size of around 115
grazing livestock units, for which the average direct cost is the lowest
(€1400), while the optimal size for the LIT farms varies between 100 and
155 GLUs at a minimum average cost of €1600. It is important to keep in
mind at this stage that the level of output is the same for both HIT and
LIT. So, in essence, cost differences infer higher margins in favour of LIT
OC per GLU (€) EIC per GLU (€) Total Cost per GLU (€) EIC
Share in total Cost (%)

1243 652 1931 0.34
1184 623 1880 0.33
1170 547 1712 0.32
850 674 1537 0.44
1770 688 2448 0.28
535 498 1079 0.46
1432 533 1973 0.27



Table 3
Cost per GLU by input components (€).

Countries Farm technology Cow Cost Rent Cost Labour Cost Intermediate Consumptions EIC (External Input Cost)

EU 27 LIT 932 204 795 5046 796
HIT 1181 192 747 8335 1258
Differences (%) 21 �6 �6 39 37

Germany LIT 1026 251 769 6332 828
HIT 1231 239 596 11 561 1289
Differences (%) 17 �5 �29 45 36

France LIT 1206 205 535 3673 724
HIT 1426 193 577 4986 1143
Differences (%) 15 �6 7 26 37

UK LIT 577 189 581 8618 822
HIT 697 153 513 11 226 1223
Differences (%) 17 �24 �13 23 33

Netherlands LIT 1393 228 841 7326 782
HIT 1779 206 753 9021 1079
Differences (%) 22 �11 �12 19 28

Poland LIT 368 94 352 1540 540
HIT 468 86 324 2171 993
Differences (%) 21 �9 �9 29 46

Belgium LIT 823 299 1157 4862 726
HIT 1142 255 1207 6023 1142
Differences (%) 28 �17 4 19 36

Fig. 1. Average Cost per Grazing Livestock Unit for Low and High Input
Technologies.

Fig. 2. : Average External Input Cost per Grazing Livestock Unit for Low and
High Input Technologies.

Fig. 3. Average Cost per Grazing Livestock- Germany (NLIT ¼588 farms and
NHIT ¼502 farms).
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for larger farms while it infers higher margins in favour HIT for smaller
farms.

Since external input cost is a significant constituent of the total costs,
similar comparisons of these specific input expenditures were made be-
tween the two technologies. The external input cost per grazing livestock
unit is represented by a quasi-flat line as shown in Fig. 2 below, thus
presenting a gap that exceeds 24% between the two technologies. This
percentage is more significant than the difference in operational costs
shown in Fig. 1.

The gap between the estimated EIC of the two technologies becomes
wider with an increase in the size of grazing livestock unit (Fig. 2). Thus,
7

changes in size has less effect on the average cost of low input than high
input, this therefore explains why LIT dominates HIT at a large scale
(Fig. 2).

4.2. Country-specific context: Exploring six EU countries by farm size

To extend the previous conclusion to the top producers of milk in the
EU, we run new simulations with six different EU-countries and their
related input practices thereby revealing the heterogeneity of EU-27
dairy farming system. Fig. 3 shows LIT-Germany dominating HIT-
Germany at every point on the scale. From the robust approach, which
considers the presence of outliers, the gap between the two cost curves
surpasses 5% on average. The HIT-Germany presents an optimal size of
around 130 grazing livestock units while the LIT-Germany presents an
optimal size of around 170 grazing livestock units for which the average
direct cost is the lowest (€5600).

Fig. 4 shows a conformity with the usual U-Shaped average cost curve
with the frontier on HIT-France having an optimal size between 80 and
160 grazing livestock units for which the average direct cost is €8300
while LIT-France presents an optimal size of 90 GLU with an average
direct cost of €7900. Thus, this Figure clearly shows that LIT is domi-
nating their HIT counterparts in terms of direct cost of production



Fig. 4. Average Cost per Grazing Livestock- France (NLIT ¼310 farms and NHIT

¼257 farms).

Fig. 5. Average Cost per Grazing Livestock- UK (NLIT ¼141 farms and NHIT

¼138 farms).

Fig. 6. Average Cost per Grazing Livestock- Netherlands (NLIT ¼75 farms and
NHIT ¼150 farms).

Fig. 7. Average Cost per Grazing Livestock- Poland (NLIT ¼212 farms and NHIT

¼163 farms).
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especially for farmers with 70–200 grazing livestock units. In UK dairy
farms, the farmers raised an average of 100–480 livestock units which
seems to be a significant number of animals raised as compared to other
countries. The exploration of Fig. 5 shows that grazing livestock units
ranging between 100 and 110, LIT-UK dominates the high input ones
while HIT- UK are dominating their low input counterparts for grazing
livestock units between 110 and 310.

The LIT-Netherlands in Fig. 6 presents an optimal size of 155 grazing
livestock units having a minimum average cost of €15 000. On the other
hand, the optimal size for the HIT-Netherlands is between 150 and 210
grazing livestock units for which the average direct cost is 15 €200. Fig. 6
shows that, Low Input technology on Netherlands dairy farm is more cost
competitive than their High Input counterparts. In Fig. 7, the HIT-Poland
frontier presents an optimal size of around 60 grazing livestock units, for
which the average direct cost is the lowest (€2000), while the optimal
size for the LIT-Poland frontier varies between 40 and 70 GLUs at a
minimum average cost of €3000.

Fig. 8 shows the HIT and LIT on Belgium dairy farms for the simulated
points between 50 and 220 grazing livestock units, a slight dominance of
LIT occurs between 50 and 110 grazing livestock units while the domi-
nance of LIT kicks off between 110 and 220 grazing livestock units. This
shows that LIT-Belgium is dominating HIT-Belgium on the small scale of
production while LIT-Belgium dominates their high input counterparts
on a large scale.

In estimating the cost efficiency dominance of EU-27 dairy farms,
these figures clearly suggest that low input farms can be competitive with
high input farms, but this largely depends on farm size and the regional
location of the farm.

5. Discussion

Traditional frontier methods which do not account heterogeneous
technologies often results to biased frontier estimates. This is corrobo-
rated by Van Meensel et al. (2010) who use a mechanistic approach to
assess farm-specific production functions for a sample of homogeneous
pig-finishing farms. Lin and Du (2014) also state that these differences in
technology might be inappropriately labeled as inefficiency. To boost the
vigor of technology heterogeneity in efficiency analysis, this issue is
addressed in this research by distinguishing technologies and conse-
quently controlling their heterogeneities. It is important therefore to
state that despite a huge amount of published material and many avail-
able techniques, commitments invested in more cost-effective and
environmentally-friendly farming methods is already widely prominent
but unlikely to be enough in itself to ensure that current environmental
targets are fully met (Loyon et al., 2016).

This study contributes to the existing literature by implementing an
alternative approach to the one used in previous research. This paper
however argues that the production technology among the HIT farms
8

may be different from the technology used by the LIT farms. This issue is
important because if the farms in the sample use different technologies,
then supposing a single technology for all of them may cause serious
econometric problems as it is done under a traditional comparison



Fig. 8. Average Cost per Grazing Livestock- Belgium (NLIT ¼109 farms and NHIT

¼38 farms).
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assumption. In this paper, we analyze the cost efficiency gap in the
context of EU-27 dairy farms and utilized a HD approach to examine the
effect of technological heterogeneity on cost efficient frontiers. Our
analysis has some interesting methodological and policy implications.
First and from a methodological point of view, we provide evidence that
it is important to account for technological differences when examining
EU dairy farming systems. Second, using the Hamming Distance
approach, we limit the heterogeneity of EU dairy farmers that use
different technologies and we find that farm size identified by the
number of livestock units is one of the most important factors that dif-
ferentiates our sample into unique technologies.

Thinking about the existence of these different dairy farming prac-
tices, it is obvious that it varies for several EU countries, thus suggesting a
need for different technologies and adjusted policies. Martinho and Joao
Pereira (2016) assert that one of the reasons for low reliance on external
input by the Dutch dairy farmers is the increase in agricultural labour
productivity which decreases the need for external input use and as a
matter of fact he added that in Dutch dairy farms, greater labour pro-
ductivity is accompanied by low external input use. In terms of farm size,
there is more potential for Germany to reduce costs in the larger farms,
than in the smaller farms. However, the smaller farms in Netherlands,
France, UK, Belgium and Poland on the other hand have more potential
to reduce their costs of production than the big farms. This shows that
various countries have different potentials in relation to adopting a
specific technology. Martinho and Joao Pereira (2016) again opined that
the Dutch dairy farms, namely those with environmental concerns use
lower external input, specifically because of the farming management
techniques that made huge differences in terms of agricultural input-use
efficiency. Samson et al. (2016) hinted that production levels in Dutch
regions would increase after the abolition of the milk quota system,
thereby making active dairy farmers to follow an expansion strategy.

Milk production in the Netherlands is intensive and relies heavily on
purchased inputs. As a result, it achieves one of the highest milk yields in
the EU with almost 8000 kg per cow. The Netherlands produces just
under 9 per cent of EU milk output. The sector pride itself in its high
productivity and assures relatively large gross margins for Dutch dairy
farmers. However, the intensive nature of the Dutch dairy system has
raised concerns especially regarding manure application; this is because
EU dairy farming is bound by environmental regulations through the EU
Nitrates directive that limits the amount of nitrogen and phosphate that
can be put on the land. The Dutch government implemented the ‘Dairy
Law’ in January 2015 in a bid to further prevent nitrogen and phosphate
excesses on farms (Groeneveld et al., 2016). Thus, improving farm effi-
ciency which is essential for the survival of dairy farms.

The significant gap between the frontiers (Figs. 3–8) in the identified
countries could be due to different strategies of farm operation which is
characterized by variabilities in external input use. The results involve a
comparison between technologies in terms of direct input cost while
excluding the input components of the external costs which was
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conducted for different sizes of the grazing livestock units, and external
input use levels. This was made possible by exploring the direct cost
function over its whole domain of definition with the use of a framework
that assesses the cost dominance between technologies exogenously
distinguished by high or low external input costs per grazing livestock
units. Our exploration of the top milk producing countries in the EU
shows that farming systems vary markedly with respect to average cost
per Grazing Livestock Units. It is therefore evident that dairy farm size
differs across countries which is reflected in the comparison of the two
heterogeneous technologies.

Figs. 3–8 therefore shows the extent of heterogeneity in EU-27 dairy
farms and it explores the cost dominance of the LIT over HIT and vice
versa. The cost performance of the farmers using External Input Cost per
Grazing Livestock Units as a discriminating variable is used to compare
and assess the performance of LIT and HIT farms in EU-27 and to account
for regional differences. Overall results in EU-27 dairy farms show that
low input dairy farms can dominate their high input counterparts in
terms of cost but differences in farm sizes and regional differences exist.
LIT farms may benefit from cost dominance if they transform their
external inputs, land, labour and operational/intermediate inputs into
milk revenues more technically efficiently compared to HIT farms,
because they use inputs in a less cost minimizing proportion.

These results corroborate the work of Bijtebier et al. (2017) where
they opined that high input use lead to high productivity, hence a high
level of revenue but with a higher cost. However, they found out that the
cost performance of farmers is affected by large differences in input use
intensity across EU regions/countries. Furthermore, our findings on cost
dominance is also illustrated by Scollan et al. (2017) where they show
different results across countries. For example, in Finland, organic dairy
farming structurally (in terms of farm size and organization), resembles
low-input systems, whereas farms in the UK are structurally more similar
to high-input farms. LIT farms have lower costs for some inputs, but this
is not always sufficient on all farms to act as compensation for higher
costs. The comparison between Germany, France, the Netherlands, the
UK, on the one hand, and Poland, Belgium, on the other hand, shows that
in the former regions, LIT succeed in obtaining a better level of cost ef-
ficiency compared to HIT farms. Thus, except for Belgium and Poland,
the results show that agricultural practices using low input are domi-
nating the high input for farms operating on a large scale while a slight
dominance of high input over low inputs exist for small scale farmers.

Overall, there is cost advantage for farmers who could significantly
reduce their input use. This is an important finding in terms of envi-
ronmental policy implications as it implies that dairy farms can reduce
their environmental impact by using low external input while achieving
their profitability objective. Previous study by Adenuga et al. (2019) has
also shown that dairy farms have the potential to simultaneously increase
dairy outputs and reduce environmental impacts through better input
management and the adoption of best farming techniques. However, the
outcomes from these two scenarios suggest that technological hetero-
geneity plays an important role in EU dairy farming systems, which are
traditionally assumed to use homogeneous technologies.

6. Conclusion

This study contributes to the literature by analyzing the impact of
supplementary feed use (referred to external input) intensification on
cost efficiency of dairy farms using an Activity Analysis model to assess
the influence of technological heterogeneity on the competitiveness of
EU dairy farms. The value of external input costs per grazing livestock
unit is used as an indicator to distinguish dairy farms into high and low
input technologies. Specifically, by utilizing Hamming Distance to con-
trol the heterogeneities of EU-27 dairy farms, we evaluated two major
frontiers that are cost efficient rather than focusing on individual farm
inefficiency scores. The comparison of these two helps in the exploration
of various farm sizes and country difference arising from optimal input
use. Thus, in Europe, low input farms can dominate their high input
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counterparts, but much depends on the region where the farm is situated.
In general, this paper shows that depending on the country and the size of
farms, LIT can be less competitive compared to HIT but in order to be
more competitive, LIT farms must use inputs in a more technically effi-
cient way. While our results indicate that on average, there is cost
advantage for farmers who could better manage their input use, we
reckon that regional difference exist. The exploration of the theoretical
review of literature points out that a farmer who prioritize reduced input
usage can still make cost minimization and environmental efficiency a
priority. Thus, increased cost efficiency can reduce the negative envi-
ronmental impact of EU-dairy farming systems while consequently
reducing farmers’ cost of production. However, future research that aims
at focusing on profit maximization as an objective may consider
exploring the impact of variable external input use on milk production as
this is beyond the scope of this present paper. This paper which inves-
tigated the cost dominance of HIT over LIT and vice versa can provide
valuable information about the necessity and importance attached to
differentiating technologies. The results of the study can therefore pro-
vide a direction to policymakers and dairy farmers alike as regards the
efficient use of external inputs which may consequently reduce envi-
ronmental burdens associated with dairy farms.
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