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Abstract: Management of nitrogen (N) fertilizer and irrigation can play a critical role to increase
nitrogen use efficiency (NUE). However, the impacts of N application at the root zone via urea
briquette deep placement (UDP) and water-saving irrigation alternate wetting and drying (AWD)
on N2O emissions are not well-understood. A greenhouse study was conducted to investigate the
impacts of UDP on N2O emissions, NUE, and grain yields of rice and wheat compared with broadcast
prilled urea (PU). For rice, the effect of UDP was evaluated under continuous flooding (CF) and
AWD, while the control (no N) and PU were tested only under CF. In rice, UDP under CF irrigation
produced similar emissions to PU-CF, but UDP under AWD irrigation increased emissions by 4.5-fold
compared with UDP under CF. UDP under CF irrigation increased (p < 0.05) rice grain yields and N
recovery efficiency (RE) by 26% and 124% compared with PU-CF, respectively. In wheat, UDP had no
effects (p > 0.05) on emissions compared with PU. However, it produced higher wheat grain yields
(9%) and RE (35%) over PU. In conclusion, UDP under CF irrigation increases the RE and grain yields
of rice without increasing N2O emissions, but the yield may reduce and N2O emissions may increase
under AWD.

Keywords: greenhouse gas emissions; nitrous oxide; nitrogen recovery efficiency; urea deep
placement; rice–wheat systems

1. Introduction

Agriculture is a major source of nitrous oxide (N2O) emissions that contribute two-
thirds of the current anthropogenic N2O emissions [1]. These anthropogenic emissions,
which are dominated by nitrogenous fertilizer addition to croplands, increased by 30%
over the past four decades [2]. N2O emissions are regulated by multiple environmental
and biological factors such as temperature, water and oxygen levels in soils, acidity, and
substrate availability. In crop cultivation, the substrate availability, which is linked with N
inputs from fertilizers and organic inputs, and N content in soils, affects two biochemical
processes, i.e., nitrification and denitrification, where N2O is produced as a by-product in
the nitrification process and as an obligatory product during the denitrification process [3].

The magnitudes and patterns of the emissions are mainly influenced by soil moisture
content, oxygen availability, and nitrogen inputs to the soils [4]. Therefore, the mitigation
of N2O emissions requires efficient N fertilizer management systems. In general, apply-
ing more N to the soils than the plant demand can increase N losses through different
mechanisms, including N2O emissions, and then reduce nitrogen use efficiency (NUE) [5].
Synchronizing crop N need and supply can be an effective strategy to mitigate N losses to
the environment [6]. Better synchrony can be achieved by adopting more efficient N man-
agement strategies such as selection of the right source, optimizing the rate, the appropriate
application time, and the right placement methods [7,8]. Adopting an efficient placement
method, for example, root-zone fertilization or the commonly called urea deep placement
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(UDP), into sub-surface soils (mostly anoxic in irrigated rice fields) helps to protect N losses
and retain N in the anoxic layer for a longer period by halting the nitrification process. As a
result, sub-surface applied N may continuously be utilized by plants as and when needed
and increase crop yields, decrease N2O emissions [9,10], and reduce N losses via surface
runoff and ammonia volatilization [11].

In irrigated rice cultivation, fields are maintained continuously flooded through fre-
quent irrigation, which requires a large amount of water. With the increasing water scarcity
in most rice-growing countries, there is a need for increasing water use efficiency. There-
fore, a water-saving irrigation, alternate wetting and drying (AWD) is developed to save
water, which also mitigates greenhouse gas methane emissions from rice farming [12,13].
While adopting AWD irrigation, irrigation is intermittently applied at a certain interval,
particularly when soil water drops 10–15 cm below the surface. However, previous studies
reported that AWD irrigation may increase N2O emissions due to increased microbial nitri-
fication and subsequent denitrification [14–17]. In contrast, rice cultivation with continuous
flooding (CF) irrigation may emit less N2O due to a complete denitrification of N2O to N2.
However, studies on the effects of UDP on N2O emissions and N use efficiency of irrigated
rice, particularly comparing water-saving AWD irrigation with conventional continuous
flooding, are still few and the results are not consistent [12,13,18]. Moreover, studies on the
impacts of UDP on wheat yield, NUE, and emissions are lacking. Therefore, a greenhouse
experiment was conducted to determine the effects of UDP on N2O emissions, NUE, and
grain yields of rice and wheat as affected by different irrigation regimes (rice).

2. Materials and Methods
2.1. Experimental Set-Up

A greenhouse study (temperature and humidity were not controlled) was conducted
at the International Fertilizer Development Center (IFDC), Muscle Shoals, AL, USA. The
study was designed in wooden boxes (L: 130 cm, W: 40 cm, and H: 28 cm) containing
140 kg of soil (Crowley silt loam, fine, smectitic thermic Typic Albaqualfs) collected from
Louisiana, USA (30◦25′ N, longitude: 92◦23′ W). The soil had 1.78 g kg−1 organic matter,
pH 6.84, 0.98 g kg−1 total N, 17.30 mg kg−1 available P, and 11.1 cmolc kg−1 available K.
The detailed soil properties are presented in [19].

Three N fertilizer treatments were (i) control (N0, 0 kg N ha−1), (ii) broadcast prilled
urea, and (iii) UDP. These treatments were arranged in a randomized complete block design
with three replications (a total of 12 experimental boxes). N rates in N fertilizer treatments
for rice (Oryza sativa L.) and wheat (Triticum aestivum L.) were 105 and 110 kg N ha−1,
respectively. These N application rates were considered optimal for the crop’s yield poten-
tial. There were two irrigation regimes in rice—continuous flooding and AWD for UDP
treatment. The remaining two treatments were tested only under CF. For AWD boxes,
irrigation was intermittently applied when the water depth dropped 10–15 cm below the
surface, following the safe AWD principle [20]. In wheat, the irrigation regime (as needed,
2–4 L per box at 2–4 days interval) was similar for all the treatments. The soil moisture
potential was continuously measured in each box using a moisture sensor (Soil Metric
Potential Sensor, Model 253-L, Watermark 200, Campbell Scientific, Inc., Logan, UT, USA).
Sensors for moisture and soil temperatures were horizontally placed in 5–7 cm depth.

The rate of nitrogen fertilizer in experimental boxes was applied as per treatment.
For PU treatment, urea was applied through the broadcast method, the first with split
application (50% of N) at 7 days after the transplanting of rice seedlings and the second
with 50% at the maximum tillering stage. For UDP, prilled urea was physically compressed
to make briquettes of 2.35 g. Then the briquettes were deep-placed at 7 cm and properly
covered by soils. A total of five briquettes were deep-placed in each box at a 20 cm distance
between two rows of rice seven days after transplanting. All other agronomic practices
were similar in all treatments.

After harvesting the rice, wheat was planted following the same treatment and exper-
imental design. Wheat seeds were sown (22 November 2013) in a line at 20 cm × 10 cm
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spacing, which accommodated 12 plants in a row and 24 plants in each box. Urea (PU) was
applied by broadcasting in two splits: 50% of N was applied two weeks and another 50%
two months after seeding. UDP was placed in 7 cm below the soil surface following a simi-
lar practice as in rice two weeks after the seeding. Details of field preparation, transplanting
of rice, and crop management for rice and wheat are described elsewhere [19].

After harvesting the wheat on 18 June 2014, soil samples (0–15 cm) were collected
from each box and analyzed for mineral N (ammonium and NO3

−–N) and soil pH. Soil
samples were separately collected from inside and outside the GHG chambers. Analysis
for mineral N and pH was performed following a standard protocol.

2.2. Grain Yield, N Uptake, and Nitrogen Use Efficiency

Crops were harvested at physiological maturity and then threshed and cleaned, and
the grain moisture content was determined. The grain yield was corrected to 14% moisture
content. The nitrogen contents of grain and straw samples were analyzed to determine
the total N uptake and NUE by plants. The different components of NUE were calculated
using the following formulas.

• Agronomic efficiency of N (AEN) = (GYN− GY0)/(FN− FN0), kg grain yield increase
per kg N applied

• Recovery efficiency of N (RE) = (UNN − UN0)/(FN − FN0), kg N uptake per kg N
applied

where GYN = total grain yield when N applied, FN = total N fertilizer applied, FN0 = con-
trol, without N, GY0 = total grain yield without N application, UNN = total N uptake in N
application treatment, and UN0 = total N uptake without N application treatment.

2.3. Gas Sampling and Measurement of N2O Emissions

Gas samples were collected using an automated closed-chamber technique and then
analyzed to determine N2O emissions. The measurements were conducted for two cropping
seasons (rice–wheat) from March 2013 to June 2014. Gas sampling for N2O measurement
was performed using an automated continuous measurement system as described ear-
lier [21]. A closed chamber with a head space volume of 0.0578 m3 (118.8 cm × 12.5 cm
× 31.2 cm; 57.8 L) was installed in each box between two rows of crops. For each gas
sampling time, a chamber was closed for 40 min, and six gas samples were collected at
8 min intervals (0, 8, 16, 24, 32, and 40 min). Gas sampling was repeated from the same
chambers (boxes) every three hours, resulting in an estimate of eight fluxes per day.

The mixing ratio of N2O was determined using a T320U Gas Filter Correlation Ana-
lyzer (Teledyne Advanced Pollution Instrumentation, API, San Diego, CA, USA), which
uses an infrared radiation (IR) absorption principle. T320U can analyze N2O concentration
up to 200 ppm, with a lower detection limit of <10 ppb. The minimum detection limit of the
flux was 10 µg m2 h−1 based on the chamber volume, area, and closure time. The analyzer
was checked with N2O standard gas every week and calibrated.

Emission rates of N2O were estimated using the linear regression of the gas mixing
ratio against the chamber closure time. The linear regression curve gives the slope, i.e.,
ppb min−1, which is converted to emission rate as mg N2O–N h−1 using the ideal gas
law [21]. As gas sampling was performed at a three-hour interval, the emission rate
between two measured points was calculated through the linear interpolation of two
emission rates. Hourly emission rates were summed up to obtain the daily emission rate,
then the daily emission rates were summed up to obtain the seasonal total emissions (g
N2O–N). Cumulative emissions were then expressed as CO2 equivalent emission using the
global warming potential (GWP) value of N2O [22]. Yield-scaled emission was measured
by dividing cumulative emissions by grain yields and was expressed as g N2O–N per ton
of yield.
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After estimating the seasonal total emissions, the direct emission factor (% of applied
N lost as N2O emissions) was determined as follows:

EFd (%) = [N2O(tr) − N2O(cr)] × 100/N Rate(tr)

where N2O(cr) and N2O(tr) are the seasonal total N2O emissions (kg N ha−1) from control
and N applied box, respectively, and N Rate(tr) is the N applied (kg N ha−1) to treatment t.

2.4. Data Analysis

The analysis of variance (ANOVA) for grain yield, NUE, cumulative emissions, emis-
sion factor, and global warming potential was conducted with SAS 9.3 using generalized
linear mixed models. Before performing the ANOVA, the data were tested for normality
and homogeneity of variance, and they were found normally distributed. A post hoc
analysis for significant response variables was carried out for mean grouping with the least
significant difference (LSD) test at a 5% probability level.

3. Results
3.1. Soil Moisture and Temperature

Temperatures (air and soil) in both rice- and wheat-growing periods ranged from 12
to 29 ◦C. The details of soil and air temperatures are presented in Figure 1.
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Figure 1. Daily average of air and soil temperatures during rice- and wheat-growing season [19].
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Soil moisture potential in all experimental boxes during the rice-growing season
(except under the AWD treatment) remained within ±10 kPa, while it dropped to −90
kPa during the drying episodes of AWD (Figure 2). There were 14 drying episodes in
AWD boxes. During the wheat-growing season, all boxes were dry, and the soil moisture
potential ranged from −40 to −200 kPa throughout the season (Figure 3). Boxes were much
drier (~−200 kPa) during the plants’ reproductive stage compared with the vegetative
stage (~100 kPa).
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Figure 2. Seasonal variations of N2O fluxes and soil moisture content under different fertilizer treat-
ments during rice-growing season. UDP, CF, and AWD represent urea deep placement, continuous
flooding, and alternate wetting and drying, respectively (n = 3).
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Figure 3. Seasonal variations of N2O fluxes under different fertilizer treatments and soil moisture
content during wheat-growing season. UDP represents urea deep placement (n = 3).

3.2. Effects on Inorganic Soil Nitrogen (NH4 and NO3)

The fertilizer placement affected (p < 0.05) the NH4
+ and NO3

− content in the soils
after two continuous cropping seasons (Table 1). The UDP treatment produced significantly
higher NH4

+–N compared with broadcast urea inside the chamber, while the amount was
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higher in PU than UDP outside the chamber. Due to this variability, the average residual
NH4

+–N, which includes inside and outside the chamber, was not statistically different
between PU and UDP. The average NO3

−–N content was significantly lower in UDP than
PU. In the PU treatment, the higher inorganic N (ammonium and nitrate) content observed
outside the chamber reflects uniform N application throughout the box. Soil pH was not
different between treatments or locations, i.e., inside and outside the chambers. Likewise,
the higher soil NH4

+–N content inside the chamber with UDP is attributed to the deep
placement of N, which occurred only inside the chamber. Moreover, as expected, the
outside soil N content was similar to the control (Table 1).

Table 1. Soil ammonium (NH4
+–N), nitrate (NO3

−–N), and pH at different positions of experimental
pots (inside and outside of the chamber) after two continuous cropping seasons (rice–wheat). Means
(± standard error) within a column followed by same letters are not significantly different by LSD at
0.05 level.

Treatments
NH4

+–N (mg/kg Dry Soil) NO3−–N (mg/kg Dry Soil) pH

Inside Outside Average Inside Outside Average Inside Outside Average

Control 3.67 ±
0.06 b

4.01 ±
0.16 b

3.84 ±
0.05 b

1.67 ±
0.18 b

1.40 ±
0.14 b

1.54 ±
0.14 b

6.56 ±
0.12 a

6.47 ±
0.06 a

6.50 ±
0.04 a

UDP 6.76 ±
0.65 a

4.21 ±
0.16 b

5.49 ±
0.36 a

1.64 ±
0.52 b

1.24 ±
0.24 b

1.44 ±
0.37 b

6.73 ±
0.13 a

6.41 ±
0.07 a

6.51 ±
0.08 a

Broadcast 4.78 ±
0.46 b

5.05 ±
0.36 a

4.91 ±
0.39 a

3.24 ±
0.59 a

2.24 ±
0.42 a

2.74 ±
0.50 a

6.44 ±
0.17 a

6.35 ±
0.06 a

6.38 ±
0.03 a

3.3. Temporal Variations in N2O Fluxes

Overall N2O emission showed high temporal variations. In rice, N2O emissions were
stimulated, and some peaks appeared when soil was irrigated on March 19 before rice
transplanting (Figure 2). Both N fertilizer application and AWD affected emissions. The
UDP-AWD treatment produced more prominent emission peaks, particularly when the
plots were dry, while the peaks were negligible in the UDP-CF and broadcast treatments.

The N2O emission peaks showed a consistent trend during the wheat-growing season
(Figure 3). These emissions were sustained for almost two months (Dec–Jan) with emission
peaks of up to 260 µg m−2 d−1 in the UDP treatment. In broadcast urea, emission peaks
appeared after each irrigation and topdressing of urea and reached up to 167 µg m−2 d−1.

3.4. Seasonal Total N2O Emissions and Emission Factor (EF)

In rice, fertilizer placement had significant effects on the seasonal total emissions
(Table 2). Deep-placed urea under AWD irrigation increased N2O emissions by 4.6-fold
compared with UDP under CF irrigation. In contrast, under CF irrigation, deep-placed
urea produced emissions similar to those of broadcast urea. The seasonal total emissions
ranged from 14.9 to 85.3 g N ha−1 during the rice-growing season. In wheat, the seasonal
total emissions ranged from 30.5 g N ha−1 to 91.0 g N ha−1, and fertilizer placement had
no significant effects on emissions. Although the application of N fertilizer either as PU or
UDP increased N2O emissions by 134% to 198% relative to the control, this increase was
not significant (p > 0.05). The effects on GWP of N2O (CO2 eq. emissions) followed the
same pattern as the cumulative emissions.

The UDP-AWD treatment (rice) had higher emission intensity (7. 67 g N t−1 grain)
compared with that of the broadcast and UDP-CF treatments (<3 g N t−1), but this effect was
statistically similar (p > 0.05). Similarly, fertilizer application methods had no significant (p
> 0.05) effects on emission intensity in wheat.

In rice, the emission factor (EF) for UDP-AWD (0.0656%) was higher (p < 0.05) than that
for broadcast urea and UDP-CF treatments. As with cumulative emissions, the EF of UDP-CF
was similar to that for the broadcast urea treatment. In wheat, fertilizer placement had no
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significant effect on the EF. Nevertheless, fertilizer-induced EF was very low (<0.06%) in both
rice and wheat, ranging from 0.0011% to 0.0656% in rice and 0.051% to 0.055% in wheat.

Table 2. Seasonal cumulative emissions of N2O (g N ha−1), global warning potential (CO2 eq),
yield-scaled emissions, and direct emission factors of N2O (EF-N2O–N, %) in control, urea deep
placement (UDP), and broadcast urea (n = 3).

Crop N
Treatments N2O Emissions EF N2O–N

g N ha−1 kg CO2 eq.
ha−1 g N t−1 grain %, w/w

Rice Control-CF 13.90 b 6.38 b 2.51 -
UDP-CF 15.33 b 6.38 b 1.67 0.0011 b
UDP-AWD 85.28 a 35.51 a 7.67 0.0657 a
Broadcast-CF 14.93 b 6.22 b 2.11 0.0008 b

ANOVA (Pr > F) 0.0037 0.0037 0.0844 0.0183

Wheat Control 30.50 12.70 33.28 -
UDP 71.40 29.73 24.40 0.0510
Broadcast 91.00 37.89 32.88 0.0550

ANOVA (Pr > F) 0.7673 0.7673 0.8864 0.6704
Within a column, means followed by identical letters are not significantly different by LSD at the 0.05 level; CF,
continuous flooding; AWD = alternate wetting and drying.

3.5. Effects on Grain Yields and Nitrogen Use Efficiency (NUE)

N fertilization—regardless of the application method—increased yields for both rice
(except in UDP-AWD) and wheat compared with the control. UDP-CF increased grain
yields by 26% compared with PU-CF, while UDP-AWD had similar yield with PU-CF
and control-CF (Table 3). In wheat, UDP produced higher yields (9%) than PU, but this
difference was not significant (p > 0.05). Deep placement significantly increased the total
N uptake and NUE (RE) in both rice (under CF) and wheat compared with the broadcast
application of urea. UDP increased NUE (RE) by up to 53% in wheat and up to 80% in
rice compared with 36% and 40%, respectively, in the case of PU. However, agronomic
efficiency (AE) was not affected by fertilizer treatments in either rice or wheat.

Table 3. Grain yields, aboveground nitrogen uptake, and nitrogen use efficiency across different
treatments in rice and wheat (n = 3).

Crop N Treatments Grain Yields
kg ha−1

N Uptake
kg N ha−1

AE
kg grain kg−1 N

RE
%, w/w

Rice Control-CF 5614 c 161 bc - -
UDP-CF 9224 a 245 a 34.38 a 79.86 a
UDP-AWD 6963 bc 239 ab 15.42 a 75.26 a
Broadcast-CF 7311 b 199 bc 16.16 a 35.66 b

ANOVA (Pr > F) 0.0039 0.0002 0.0695 0.0128
Wheat Control 897 b 22 c - -

UDP 2956 a 82 a 18.72 a 53.37 a
Broadcast 2706 a 66 b 16.45 a 39.58 b

ANOVA (Pr > F) 0.0001 0.0000 0.2315 0.0046
Within a column, means followed by same letters are not significantly different by LSD at the 0.05 level. AE,
agronomic efficiency; RE, recovery efficiency; UDP, urea deep placement; CF, continuous flooding; AWD, alternate
wetting and drying.

4. Discussion

Mitigation of nitrous oxide emissions from crop cultivation can be performed by increas-
ing use efficiencies of N fertilizer and water regimes. Increasing NUE not only reduces N
losses to the environment but also increases plant uptake and yields. NUE can be increased
by synchronizing the N supply with the plant demand, which can be carried out by adopting
the 4R’s of the nutrient stewardship approach (right source, right rate, right time, and right
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placement). An effective approach to increasing NUE is sub-surface application or applying
fertilizer in the plant’s root zone [23]. This increases NUE by increasing the plant N uptake
and reduces N losses compared with broadcast application [8,10]. However, the effectiveness
of deep placement varies with crops; it is more effective in irrigated lowland rice fields [24]
than in other cereal crops [25]. When rice is cultivated with CF irrigation, the deep-placed
urea remains in an anaerobic soil layer as NH4

+–N, and only a negligible amount of N
moved into the soil surface compared with PU [10,26]. Due to the absence of oxygen, there
is no nitrification and subsequent denitrification. Therefore, deep placement minimized
N losses through ammonia emissions, surface run-off, and nitrification and denitrifica-
tion including N2O emission reductions [9,10]. Deep placement ensures a continuous N
supply that is synchronized with the plant demand. In contrast, the broadcast applied
urea immediately dissolves in floodwater. Then the inorganic N on the soil’s surface and
in floodwater can easily be lost to the environment through ammonia volatilization and
nitrification/denitrification with emissions of N2O and NO [9].

Our results suggest that the impacts of UDP vary with water regimes and crops
(Table 2). UDP with CF irrigation had similar emissions as broadcast urea. The reduction
of emissions under CF irrigation has already been explained—it increases plant uptake
by reducing N losses [11,27]. In contrast, there were increased emissions with UDP-AWD
irrigation compared with UDP-CF, which is likely associated with increased nitrification–
denitrification caused by the intermittent wetting and drying of soils (Figure 1) resulting
in a large emission peak (Figure 2), and a higher cumulative emission than PU and UDP
with CF irrigation. As discussed earlier, UDP retains more NH4

+–N in soils [26], which
can be nitrified during the dry period due to increased oxygen supply, and thus higher
N2O emissions. These results confirm that intermittent soil drying and wetting favors both
nitrification and denitrification, resulting in greater N2O emission peaks and cumulative
emissions as observed in previous studies [13,16,28,29].

Similarly, in the wheat-growing season, the emissions from the UDP treatment were
comparable with the emissions from UDP-AWD in rice (Table 2). Although the application
of N fertilizer (either by UDP or broadcast) produced emissions two times higher than the
control, this difference was not significant due to large variations among the replicates.
Large variability in N2O emissions occurs at different spatial scales, including across sites,
between and within fields, and within a pot in a field; this is due to variations in soils,
organic carbon, microbial activities, and the content of soil water and inorganic N, which
directly affect N2O emissions [30,31]. Variations across replications can be expected more
in an upland crop (wheat in this study) compared with rice fields, as continuous flooding
creates a homogenous environment in the soils. Despite the uniform distribution of soils
within a box, the large variability can be explained by the multitude of factors influencing
the process of nitrification–denitrification.

In wheat, similar emissions between UDP and broadcast urea can be due to higher
emissions from broadcast application compared with the rice season. These results suggest
that upland soils emit more N2O emissions compared with lowland irrigated soils, regard-
less of what placement method is used [32,33]. Since all boxes were irrigated to maintain
the optimum moisture, fertilized boxes had higher emissions due to continuous substrate
availability (NH4) for nitrification, while UDP retains more N in the sub-surface soils [26],
which can be subjected to nitrification and produce higher N2O emissions. Prilled urea was
applied in two equal splits through the broadcast method when soil moisture was at an
optimum condition, which facilitated nitrification and was sustained for about two months
(December–February) resulting in similar emissions with UDP (Table 2).

The magnitude of the total seasonal emissions was relatively low in both the rice-
and wheat-growing seasons, ranging from 15 g N ha−1 season−1 to 91 g N ha−1 season−1.
Although the fertilizer-induced EF of UDP-AWD in rice was significantly higher than that
of UDP-CF and broadcast urea, the total seasonal loss of N through N2O emissions was
relatively low (<0.06% of applied N). On the other hand, in wheat, fertilizer placement had
no significant effect on EFs, which ranged from 0.05% to 0.06% of the applied N. These
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results are supported by previous studies [9]. However, the magnitude of emissions in our
study is much lower compared with the default Tier I emission factor of 1% of the applied
N [34] and 1.7–2.5% reported from Indo-Gangetic Plains [35]. While emissions from upland
crops and rice with AWD irrigation depend on the irrigation regime and moisture content,
N2O emissions can further be mitigated by adopting customized recommended N rates
for new products and practices that increase NUE. For example, increasing the depth of N
placement from 7–10 cm to 15 cm in wheat [32] and adjusting the water regime (to maintain
soil saturation) in rice can be an effective N2O mitigation strategy.

UDP with CF irrigation increased rice yields and NUE (RE) compared with the con-
ventional urea application method (broadcast). Increased rice yields and NUE with UDP
are already well-documented [10,24]. Generally, UDP increases rice yields by 15–20% and
saves urea by 25–50% compared with the broadcast application of PU. However, in contrast
with previous studies [10,24], UDP had no yield benefits under AWD irrigation. The effects
of AWD on grain yields depend on the soil type and intensity and duration of soil drying.
Under field conditions with safe AWD irrigation, i.e., applying irrigation when the surface
water reaches 10–15 cm below the surface [20], UDP can be equally effective under both CF
and AWD irrigation regimes to increase grain yields and NUE [11]. In wheat, although UDP
increased grain yields and NUE, the magnitudes of the increase were relatively low when
compared with rice. This might be related to the irrigation regime (or moisture content).
Generally, as discussed earlier, the effectiveness of UDP in increasing yields and NUE in
upland crops is relatively lower than that of lowland rice. In this study, N rates for UDP and
broadcast urea were the same; the general recommendation is to apply UDP at lower rates [36]
as it increases grain yields and NUE by reducing N losses to the environment [9,10,37]; thus,
it can be considered a Climate-Smart fertilizer management practice.

5. Conclusions

This study suggests that the mitigation of nitrous oxide (N2O) emissions with urea
deep placement (UDP) varies with crop and irrigation regime. In rice, UDP with alternate
wetting and drying (AWD) irrigation can increase N2O emissions compared with UDP
or PU with continuous flooding (CF). In wheat, N2O emissions were not affected by N
fertilizer application methods. However, irrigated upland crops (e.g., wheat) can emit more
N2O compared with irrigated rice fields, regardless of N placement. This was evident
from the similar N2O emissions in UDP-AWD in rice and UDP in wheat. Nevertheless, the
N loss was very minimum (<1% of applied nitrogen) from an agronomic perspective, as
losses from other mechanisms may reach up to 50% of applied N. In addition to reducing
N2O emissions, UDP under CF irrigation can increase rice grain yields compared with
PU and nitrogen recovery compared with broadcast PU. Thus, UDP, if applied with CF
irrigation, can be effective in achieving multiple benefits of the Climate-Smart agriculture—
increased yield, nitrogen use efficiency, and reduced GHG emissions from rice—but may
increase emissions and reduce yields under water-saving irrigation. More studies with
varying intensities of soil drying and fertilizer application are needed across different
agroecological regions and soil types to determine the effects on total GHG emissions,
fertilizer use efficiency, and change in soil fertility.
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