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A B S T R A C T   

In intensive livestock areas, soils commonly contain elevated nutrients above the agronomic optimum which 
increases the risk of nutrient losses and contributing to poor ecological status waterbodies. Large within-field 
variability in soil nutrient content exists, and at-risk phosphorus (P) hotspots are rarely quantified due to sub- 
optimal soil sampling regimes. This study aims to address this issue by developing and evaluating an 
improved classification of P transfer risk at a sub-field scale through a weighted risk assessment model that 
combines gridded soil sampling data with modelled in-field surface runoff pathways. Within-field soil P vari
ability was quantified at six field-scale sites in Northern Ireland using two different sampling techniques; 
traditional bulked field soil sampling (i.e. bulk analysis of W pattern sampling) and gridded sampling (at 35 m 
resolution) alongside interpolation. Results show that traditional bulked sampling failed to account for the sub- 
field scale spatial variability in soil P content. This may contribute to the poor chemical and ecological status of 
surface waters by frequently under-predicting soil nutrient content, and failing to identify potential contributing 
sources of soil P losses. In contrast, higher intensity gridded sampling and interpolation revealed wide in-field 
spatial variability in soil P content, facilitating the identification of contributing sources of P losses to poor 
water quality and aiding in the characterisation of risk for nutrient losses to waterways. Hydrological modelling 
of in-field runoff pathways indicated several P sources potentially contributing to runoff-based P losses. Our 
weighted risk assessment model was successful in identifying P hotspots and transfer potential to water courses, 
illustrating that a similar approach could be applied anywhere in the world where excess P poses a problem for 
water quality. Model validation took place using instream water quality sampling data, which showed that 
higher risk weighting model results correlated to poorer water quality conditions. This methodology could be a 
useful management tool to help countries meet their national water quality targets.   

1. Introduction 

Agricultural practices have been identified as major contributors to 
poor water quality due to the effects of sedimentation and nutrient 
enrichment, released by processes and activities such as fertilisation, soil 
erosion, and livestock grazing (Zia et al., 2013). Characterising associ
ated diffuse agricultural pollution of water bodies is a challenge, which 
is complicated by the delivery process of management policies and 
monitoring schemes focused on the catchment scale (Voulvoulis et al., 
2017; De Vito et al., 2020). For agricultural grasslands, there are specific 
knowledge deficiencies around the quantification of point and diffuse 
nutrient sources. Phosphorus (P) is particularly important as it plays a 

key role in eutrophication occurrence (Le Moal et al., 2019). In intensive 
livestock systems such as those in northwest Europe, soil P tends to exist 
in excessive quantities due to long-term over-application rates of P- 
enriched slurry and fertilisers, above what is required for agronomic 
production (McDonald et al., 2019). Nevertheless, there is large within- 
field spatial variability in soil P (Wilson et al., 2016; Fu et al., 2016; 
Rowe et al., 2016), which is typically uncharacterised and unaccounted 
for in management appraisals using bulked W soil sampling methodol
ogies. Areas of nutrient surplus need to be identified at a higher spatial 
resolution and the risk of these areas contributing to nutrient losses 
needs to be defined to improve nutrient use efficiency on farms and 
reduce P losses to waterways. 
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Phosphorus losses from agricultural land can be either short- or long- 
term. Short-term losses occur after events such as fertiliser application 
(chemical or slurry-based) particularly if these coincide with sub- 
optimal application conditions e.g. saturated soil conditions, poor 
timing in line with rainfall events or poor application techniques such as 
spreading too close to waterways (Ockenden et al., 2017). Inappropriate 
management of grazing animals such as allowing access to waterways or 
hydrologically-connected field drains or ditches through a lack of suit
able fencing can promote short-term elevations in P losses through an
imal excretion. A 2017 case study found that livestock manure 
accounted for 81 % of P inputs to soils (either during the grazing process 
or spreading of manures) in a substance flow analysis for P within 
Northern Ireland (NI), indicting the considerable role that this P source 
plays in contributing to soil P (Rothwell et al., 2020). Chronic long-term 
P losses over several years can originate from legacy nutrient accumu
lations within soils despite no applications of P occurring. These losses 
typically occur through actions such as subsurface drainage, surface 
runoff or soil erosion occurrence which vary in the magnitude and fre
quency at which these remobilise soil P sources dependent on specific 
conditions (Sharpley et al., 2015). Furthermore, the effects of livestock 
grazing such as soil compaction through trampling or compaction 
through farm machinery can promote chronic P losses through the 
increased likelihood of surface runoff or soil erosion (Ockenden et al., 
2017). 

On most grassland farms, a field is considered a single management 
unit, with blanket nutrient applications applied per field. This uniform 
management fails to account for within-field spatial variability in soil 
nutrients, which can be extensive as it does not consider areas of defi
cient or excessive soil nutrient content which may require lower or 
higher fertilisation amounts (McCormick et al., 2009). Despite the 
known variability in soil P content at the sub-field scale and the exis
tence of soil P hotspots across various farming regions (Tóth et al., 
2014), soil sampling schemes have failed to move beyond average field 
sampling techniques of bulked W sampling. Gridded soil sampling is 
commonly used in arable systems to manage productivity (Higgins et al., 
2019), but for grasslands this form of nutrient management is under- 
utilised. The reliance on average field nutrient values in grassland sys
tems introduces inaccuracies for fertiliser applications, with a perpetu
ation of soil nutrient accumulation (Tóth et al., 2014). Improving water 
quality requires a good understanding of the spatial variability in P 
content and subsequent use of variable rate fertiliser applications (e.g. 
balanced P applications against soil requirements). This potentially 
could help minimise P losses from the soil to the environment. To 
identify point and diffuse P sources at farm and field-scale, site-specific 
gridded soil sampling and nutrient management could therefore address 
environmental issues whilst ensuring agricultural productivity (van der 
Salm et al., 2017). 

Of further importance is understanding how soil P hotspots may be 
connected to waterways via surface and subsurface flow pathways. To 
understand the risk of these transfer mechanisms, it is necessary to 
analyse characteristics that enhance the transfer risk, e.g. topographi
cally steep and hydrologically-connected slopes promoting runoff 
(Boardman et al., 2019). Analysis of high-resolution elevation (e.g. 
LiDAR) data can provide insights into in-field hydrological flow path
ways based on field microtopography. For example, Cassidy et al. (2019) 
used bulked field sampling for soil Olsen P and analysed at-risk areas 
based on a runoff model using LiDAR digital elevation models and soil 
hydraulic conductivity data to analyse the field to catchment scale risk 
of P transport. Djodjic and Markensten (2019) and Andino et al. (2020) 
further highlighted the need for effective risk mapping, suggesting that 
analyses must contain data at a high enough resolution to appreciate 
sub-field scale variability in P source areas. However, as demonstrated 
by Andino et al. (2020), little is known regarding the spatial relationship 
between sub-field scale P sources and the associated P losses at this 
resolution. As such, research is needed to understand the likelihood of 
nutrient losses at the sub-field scale, due to current sub-optimal soil 

sampling regimes failing to capture sub-field scale point and diffuse soil 
P sources. 

Inherent difficulties are present when linking in-field runoff mea
surements of nutrient losses to measured instream water quality con
ditions with the complexities present in flow regimes (McDowell et al., 
2003). Research often focuses on either P loss mechanisms from soils 
and agriculture (e.g. Johnston and Poulton, 2019) or the impacts and 
trends of P once within waterways (e.g. Smith et al., 2013), with few 
studies having considered the relationships between the two systems. 
Difficulties arise when linking the two systems as there is the potential 
for instream nutrient loads to consist of upstream inputs, have nutrient 
sources released through instream processes such as riverbed or bank 
erosion, or have nutrient fractions undergo chemical transformations 
instream. To link potential field losses with the impacts on water quality, 
regular sampling of waterways up- and downstream of the contributing 
fields of interest may overcome some of these issues. 

This study aimed to address the above knowledge gaps by developing 
and testing a new approach that combines hydrologically modelled 
runoff pathways (based on the soil topographic index (STI)) with grid
ded sampling interpolation techniques in a risk-weighted GIS-based 
model. The development of risk assessments for soil P losses has been 
extensively outlined in Buczko and Kuchenbuch (2007). In summary, 
there is no one standard approach, although most methods now assess 
the source and transfer factors separately before combination e.g. ad
ditive or multiplicative processes (Heckrath et al., 2008). However, little 
to no approaches use sub-field scale soil P data, instead relying on 
average field sampling methods or edge-of-field soil samples which are 
unrepresentative of the true variability in soil P content and typically 
underpredict risk (Hughes et al., 2005; Heckrath et al., 2008; Cassidy 
et al., 2019). As per Thomas et al. (2016a), STI accounts for soil water 
storage capacity and considers the hydrological disconnection which 
exists in runoff generation and transfer of flow. Higher STI values are 
indicative of an increased risk of runoff generation and associated P 
losses. We applied and tested the approach to six field-scale sites in 
Northern Ireland in areas that are typical of many agricultural fields in 
humid temperate regions, which are characterised by high nutrient 
applications and frequent surface runoff. In these environments, water 
quality is typically below environmental targets and there is a need for 
effective decision-support tools for water quality management. The 
specific research objectives were to: 

Map and quantify sub-field scale spatial variability in soil P content 
using gridded soil sampling and geostatistical interpolation and 
compare this to traditional bulked field-scale sampling methods. 
Determine the risk of gridded sampling identified diffuse and point P 
sources to contribute to poor water quality in combination with 
modelled in-field runoff pathways in a weighted risk assessment 
model. 
Evaluate the relative performance of the approach across sites using 
independently collected phosphorus water quality data in adjacent 
streams 

2. Methods 

2.1. Study area description 

The chosen study catchment was the cross-border Blackwater 
catchment in NI and the Republic of Ireland (ROI), with 90 % land use 
classed as agricultural with a focus on sheep, beef, and dairy farms 
(Bastola et al., 2011). The catchment drains an area of 1480 km2 with a 
geology of Carboniferous sandstone, limestone, shale, and mudstone 
overlain by pro-glacial boulder till to form drumlins and moraines 
(Bastola et al., 2011; Campbell et al., 2015). Soils are poorly draining 
with a seasonally perched water table promoting saturation-excess 
runoff. With high winter rainfall and associated runoff rates, low 
effective soil water storage capacity, and poor permeability, these 
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factors all elevate the diffuse pollution risk (Bastola et al., 2011). 
The spatial variability in soil nutrient status was investigated for six 

field-scale permanent grassland sites within the Blackwater catchment. 
These field sites represent a range of agricultural activities (details in 
Table 1, locations in Fig. 1). These sites are typical for the region with 
variable topography and field sizes. All of the soils underwent regular 
applications of fertiliser and slurry of primarily dairy or poultry origin. 

This study compared soil P content for the six field-scale sites ob
tained via traditional bulked field soil sampling methods with P content 
from GPS-guided gridded sampling. This allowed for determining the 
appropriate sampling strategy required to quantify P point or diffuse 
sources at the sub-field scale. 

2.2. Sample collection 

ESRI software ArcMap 10.5 was used to digitise each subfield’s 
boundaries from Ordnance Survey Northern Ireland 2017 Orthoimagery 
as discrete polygons. A regular sampling grid of 35 m was generated for 
each sub-field with samples collected in January 2020 for Sites 1 – 4 and 
in December 2020 for Sites 5 – 6. These dates were selected to coincide 
with the closed spreading period in NI (15th October to 1st February), 
which allowed us to establish P status before fertilisation and avoid the 
effects of fresh deposits of animal manure (Shi et al., 2002). The sam
pling grid design was chosen based on a previous grassland study in NI 
by Shi et al. (2002) who found that the best compromise between the 
accuracy of interpolation and sampling efficiency was to sample at an 
interval of 35.4 m on a triangular grid. A Leica Viva GPS was used to 
locate each sampling point to an accuracy of ± 0.5 m. At each point, 
20–30 soil cores were collected within a 1 m radius of the sampling point 
using a 7.5 cm depth cheese-corer auger, and the 20–30 cores were 
bulked together to produce one bulked sample per point for analysis of 
soil Olsen P content. Vegetation and large stones were removed before 
sample bulking (Theocharopoulos et al., 2001). For details on the 
number of gridded sample points per sub-field see supplementary in
formation in Table A.1. 

Traditional field sampling in the UK and Ireland typically involves 
taking a bulked sample from walking a W pattern across each sub-field 
(Teagasc, 2017; AHDB, 2022). To compare the outcomes of the gridded 
sampling with those of the W pattern bulked sample approach, we also 
collected samples following the traditional way. For this, 20–30 soil 
cores were collected using a 7.5 cm depth auger for analysis of soil Olsen 
P content along the W pattern at random points. All soil cores from this 
W pattern were then combined to produce one bulked soil sample 
(comprising 20–30 soil cores) per sampled field. 

2.3. Laboratory analysis to determine plant available phosphorus 

Collected soil samples were air-dried at 30 ◦C and sieved through a 2 
mm aperture sieve before analysis for plant-available P, which was 
determined using the Olsen P methodology (MAFF, 1986; Olsen and 

Sommers, 1982). Olsen P is the standard agronomic soil P test used in 
the UK, with the results expressed as an Index for management purposes, 
indicating deficient, optimum, or excessive soil P contents as shown in 
Table 2 (AHDB, 2019; Cassidy et al., 2019). 

2.4. Geostatistical data analysis 

Each sub-field site had a continuous surface mapping specific P 
content generated using Ordinary Kriging in ArcMap 10.5. These were 
constrained to the boundaries of the sub-fields by setting the workspace 
extent in the kriging processing to the digitised sub-field site polygons 
used in the generation of the 35 m sampling grids. Ordinary kriging 
interpolation is the most robust method for one variable as it estimates 
the value of the variable at unsampled locations on given support, which 
is the region represented by the sampling regime, by maintaining the 
data structure (Clay and Shanahan, 2011). Interpolation allows a 
continuous surface to be created by predicting the values of unsampled 
locations based on the measured sample points (Burrough et al., 2015). 

The interpolated maps allowed for the identification of P hotspots at 
a sub-field scale, concerning specific characteristics that may be 
contributing to the presence of these zones or increasing the potential 
for P export. 

2.5. Weighted risk assessment model 

The model developed here considered risk assessment values for both 
bulked soil P content and 35 m interpolated soil P content. It combined 
soil P data with LiDAR-derived STI data as the model’s input datasets (as 
rasters). Prior research by Thomas et al. (2016b) for Irish grasslands 
found that STI values less than 8.5 represented hydrologically insensi
tive areas of little to no runoff occurrence. Research in the Blackwater 
catchment on runoff generation found that runoff occurred with STI 
values of 2.50 and above. Values less than 2.50 were set to NoData to 
exclude these from risk analysis using the raster calculator function. 

These input rasters of STI and soil P content were rescaled to a 
common evaluation scale (1 to 10) to represent the magnitude of risk 
(given in Table 3) and converted to integer types (Thomas et al., 2016b). 
An additive approach was then used on the source (soil P content) and 
transfer (LiDAR-derived STI) model risk-assessed input datasets to give 
an overall risk value which was normalised to values from between 0 to 
10 (Table 3). The source and transfer dataset’s risk values were each 
multiplied individually by specific weighting factors which sum to 100 
% influence within the model. Prior research on Irish grasslands by 
Cassidy et al. (2017) showed that elevated soil P content did not 
correlate to elevated runoff-based P losses and that soil moisture and 
rainfall conditions influenced runoff losses. With the higher influence of 
runoff generation on inducing runoff-based losses, risk weighting factors 
in this model weighted soil P content (P-Weighting factor) at 40 % in
fluence and STI (Runoff-Weighting factor) at 60 % influence. This model 
design builds on previous P risk assessment work performed in Ireland 
by the Magette P Ranking Scheme (PRS) (Hughes et al., 2005), by 
Thomas et al. (2016a, b) to identify runoff delivery points, and by 
Cassidy et al. (2019) who developed a HSA index scheme based on a risk 
percentile model using LiDAR data to derive STI values. These risk 
assessment approaches focused on bulked soil P sampling data. As 
bulked sampling underestimates soil P content in some places and 
overestimates it in others, it indicates that risk assessment values made 
on this basis will be inaccurate on a spatial basis. 

To risk assess sub-field scale soil P content, the field PRS (developed 
for Irish grasslands from the Magette PRS risk assessment based on 
Morgan P in Hughes at al. (2005)) was adapted to Olsen P. The original 
risk assessment values ranged from 1 − 4 on a field scale with non-linear 
increases in risk values between Morgan P classes (Hughes et al., 2005). 
There are issues with comparing Morgan P directly to Olsen P as Morgan 
P only classifies soil P into four index classes while Olsen P covers a 
wider index range (Vero et al., 2021). With the greater range of index 

Table 1 
Field size and predominant land use for the six study sites.  

Site Site 
Size 
(Ha) 

Number of 
sub-fields 

Predominant land use 
across all sub-fields 

Predominant soil type 
across all sub-fields 

1  6.52 3 Silage and Animal 
Grazing of Beef and 
Sheep 

Fluviosols 

2  4.71 3 Silage and Poultry 
Farming 

Stagnosols 

3  6.71 3 Silage and Animal 
Grazing of Dairy Cattle 

Stagnosols 

4  5.01 2 Animal Grazing of Beef 
Livestock 

Stagnosols 

5  3.43 NA Silage Stagnosols 
6  5.04 NA Silage Stagnosols  
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values considered by Olsen P, risk factor values of Olsen P were 
expanded further than those given in the Magette PRS (which classed the 
highest risk as 15 mg L-1 and above, for Olsen P, this is Index 1 boundary 
values). Olsen P risk values are given in Table 3. 

Following Thomas et al. (2016a), TWI (Topographic Wetness Index) 
rasters were created for each sub-field using hydrological modelling and 
spatial analyst tools in ArcMap on 1 m LiDAR Digital Terrain Model data 
to indicate runoff flow pathways. Modelling in-field runoff pathways has 
improved through using LiDAR given its accuracy and ability to include 

microtopographical features such as hedgerows or road drains, which 
can act as barriers to predominant hillslope flow (Thomas et al., 2017). 
At a sub-field scale, it is important to understand the hydrological 
connectivity of these features to transfer runoff into waterways e.g. 
connection points of a field drain or ditch. Thomas et al. (2017) showed 
that 1–2 m LiDAR Digital Elevation Model (DEM) resolutions were 
optimal for modelling HSAs as runoff breakthrough points could be 
predicted with an appropriate balance between microtopography and 

Fig. 1. Location of the Blackwater catchment study sites in Northern Ireland and the Republic of Ireland, soil types, location of Derrymeen monitoring station, and 
sampling strategies. 

Table 2 
Nutrient index values used and the corresponding nutrient content in mg L-1 for 
Phosphorus based on divisions given in Table 3.1 pg. 9 on the classification of 
soil nutrient indices in the RB209 Nutrient Management Guide, Section 3 Grass 
and Forage Crops (AHDB, 2019).  

Index Soil P Content (mg L-1) Soil Nutrient Status 

0 0–9 Deficient 
1 10–15 Low 
2- 16–20 Agronomic Optimum 
2+ 21–25 Agronomic Optimum 
3 26–45 High 
4 46–70 Very High 
5 71–100 Excessive 
6 101–140 Excessive 
7 141–200 Excessive  

Table 3 
Risk values assigned to soil P Index and Flow Accumulation Values on a common 
evaluation scale for use within the weighted overlay risk assessment model.1  

Soil P Index Value Risk 
Value 

Soil Topographic Index (STI) 
Value 

Risk 
Value 

0 1 2.5–4.0 1 
1 2 4.0–7.0 2 
2 (2- and 2 + ) 2 7.0–9.0 4 
3 4 9.0–11.0 6 
4 6 11.0–13.0 8 
5 8 13.0–15.0 10 
6 10    

1 P risk values for Olsen P adapted from the Magette PRS risk assessment for 
Morgan P (Hughes et al., 2005). Higher risk values indicate higher soil P content 
and increased risk of P losses. STI risk values based on research on runoff gen
eration within the Blackwater catchment and previous research by Thomas et al. 
(2016 a, b). 
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modelling the effects of natural hillslope flow movement. Typically a 
sink and fill methodology is followed to remove any sinks that would 
constrain/restrict flow. However, per Thomas et al. (2017), at a sub-field 
scale, sinks are important microtopographical features for partitioning 
runoff. TWI rasters were converted to STI rasters for each sub-field 
following Equation (1) as used in Thomas et al. (2016a).  

STI = Ln(Flow accumulation/tan slope degrees)− Ln(KsatD)                   (1) 

For which flow accumulation is the cumulative upslope drainage 
area per unit contour length, slope is surface slope gradient in degrees, 
Ksat is the mean saturated hydraulic conductivity being horizon depth 
weighted, m day− 1 and D as the total soil depth in m. Data on the mean 
saturated hydraulic conductivity were derived from bulk density and 
soil texture analysis (cf Jabro, 1992) extracted from each soil series from 
the 1:50,000 General Soil Map of Northern Ireland (AFBI, 2009) as used 
by Thomas et al. (2016a) and Cassidy et al. (2019). 

Developing a risk model using weighted overlay approaches allowed 
risk to be quantified at a sub-field scale. Including all soil P indices also 
means that deficient soil P sources which are hydrologically at-risk are 
not ignored as these can contribute significant P loads to waterways 
through runoff. This approach allowed for direct comparison of relative 
risk variations within-field as well as comparisons between fields. 
Higher values indicated an increased likelihood of either soil P losses 
(due to elevated soil P content) or increased potential for runoff flow to 
be generated based on higher STI values. Presented risk assessment re
sults ranged from 0 to 10 and are presented with a standardised legend 
across all sites.  

Risk value of P losses via surface runoff = (Soil P Source Risk * P-Weighting 
factor) + (Surface Runoff transfer risk via STI * Runoff-Weighting factor)(2)  

2.6. Water quality 

Water samples were collected instream using 2-litre sampling bottles 
from up and downstream sampling locations of Sites 1 – 4 (shown in 
Fig. 2) monthly from August 2020 to August 2021 to validate deter
mined model risk weightings against instream water quality. Sampling 
excluded Sites 5 – 6 as these did not undergo soil sampling until 
December 2020. Sampling occurred over a year-long period to cover 
variations in the agricultural calendar and seasonal variations in hy
drology and meteorology. Soluble reactive phosphorus (SRP) and total 
phosphorus (TP) were determined using EPA standard methods with an 
uncertainty of 14 µg P at the 200 µg P 1–1 level (McKenna, 2016). 

Sampling took place across a wide range of hydrometeorological 
conditions (Fig. 3). Despite having coarse temporal resolution grab 
sampling data, sampling represented the full variability represented in 
observed flow conditions for all sites, as these were sampled on the same 
dates. 

3. Results 

3.1. Comparisons between nutrient status determined by bulked W soil 
sampling versus 35 m interval gridded soil sampling for the identification of 
point and diffuse P sources 

Fig. 4 shows the P content determined by bulked field sampling, 
representing mean soil P content per field, without any measure of 
spatial variation, side-by-side with interpolated soil P nutrient status 
determined by 35 m interval gridded soil sampling for Sites 1–6. 

Several sites had soil P content above the agronomic optimum, 
predominantly for sites used for silage production as stated in Table 1. 
An exception to this was Site 3, which – while being used for silage – had 
soil P content determined as Index 2 and Index 1. Bulked sampling 
revealed that 54 % of the fields sampled had a P index above the 
agronomic optimum. 

Fig. 4 shows the P content determined by 35 m interval gridded soil 
sampling. While the overall patterns between fields are similar to the 
bulked sampling results, the kriged outputs obtained by 35 m sampling 
revealed large within-field variability in soil P, demonstrating the lim
itations of bulked sampling for quantifying nutrient variability. For all 
sites apart from Site 5, bulked sampling under-predicted the maximum 
in-field soil nutrient content, often by several index categories. As 
bulked sampling cannot demonstrate the spatial variability in soil 
nutrient content, it can both under and over-predict the maximum and 
minimum soil P content. For example, Site 1 in Fig. 4 sub-fields A and B 
are predicted by bulked sampling at Index 4, whilst gridded sampling 
revealed soil P content ranged from Index 3 to Index 6. Visualisation of P 
content showed a wide spatial variability between and within each of 
the sites with interpolation aiding in the identification of diffuse and 
point P sources. Fig. 4 for Sites 1 – 2 and 4 showed a wide range of both 
soil P deficiencies and excessive hotspot zones, ranging from indices 0 to 
6. For Site 1, a P point source was identified in sub-field A using site- 
specific knowledge combined with interpolation. A deposited area of 
animal bedding contributed to elevated P levels within the north-eastern 
section of sub-field A. Extensive diffuse sources of P were available for 
losses as shown in Sites 1 – 2 and 5 – 6. The elevated P content present at 
these sites suggested long-term over-application of P. Bulked sampling 
generally identified diffuse P sub-fields but under-predicted the 
maximum nutrient content. An exception to this is Site 5 due to the 
extensive P sources present. Bulked sampling categorised this site as 
Index 6, however, it failed to show the area of Index 5. Bulked sampling 
cannot however identify point sources of P present such as those within 
Site 1 sub-field A, Site 4 sub-field B, and Site 6. 

Site 1 sub-field C had a P content of Index 1, which represented the 
majority of P content produced by gridded sampling here. This may be 
due to this sub-field’s smaller area (0.62 ha) and thus lower potential for 
P variability (in terms of fertilisation regimes/accumulation zones). 

Fig. 2. Upstream and downstream water sampling locations for Sites 1 – 4 
displayed over 2020 orthoimagery. 
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Similarly, Site 4 sub-field B showed the majority of this sub-field (0.89 
ha) as deficient in gridded sampling at Index 1. W sampling reflected this 
at Index 1. 

3.2. Likelihood of Runoff-based soil P transport 

The outputs generated by these models are shown in Figs. 5 and 6. 
Table 4 details the average and maximum risk scores modelled for each 
site for both bulked soil P content and interpolated 35 m soil P content. 

Bulked sampling of soil P content for risk modelling generates out
puts with less variability present in risk classification values as bulked 
sampling fails to identify variability in soil P content and classifies fields 
as singular risk values in Fig. 5. This was particularly evident in com
parisons for Sites 1 – 2, and 4 between Figs. 5 and 6. For sub-field A at 
Site 4 in particular, significant coverage of risk values 3 – 5 is missed. 

Table 4 shows that generally for bulked sampling lower average and 
maximum risk values are obtained in these models compared to gridded 
sampling risk models, further demonstrating the underprediction of soil 
P content and associated risk by bulked sampling. Sites 3, 5 and 6 had 
the same maximum risk values for both approaches. This may relate to 
Sites 3 and 6 soil P content being close to optimum and Site 5 being a 
widespread diffuse soil P source. Interestingly, Site 5 obtained a slightly 
higher average risk weighting value on a bulked approach, likely 
relating to bulked sampling failing to represent the full variability of soil 
P content at this site in terms of both index 5 and 6 soil P being present. 

The visualisation of the outputs generated by the risk model in Fig. 6 
showed greater variability in risk weighting values than in Fig. 5 due to 
the greater resolution afforded by 35 m gridded soil sampling. Higher 
risks are identified with the concurrence of modelled flow pathways and 
elevated soil P content. 

For Site 1 in Fig. 6, sub-fields A and B are classified as medium to 
high risk due to extensive diffuse soil P sources. An increased risk was 
identified in sub-field A in the vicinity of the identified P point source, 
however, the lack of risk highlighted flow pathways within this feature 
suggests a lower risk of transfer despite being risk weighted at 5. There 
was a particularly high risk (risk weighted at 7 – 9) of elevated P losses 
within the southwestern corner. The targeted intervention in this area 
would be advisable to reduce losses (at the highlighted flow pathways 
delivery points), given the hydrological connectivity of this area with 
the presence of a field drainage ditch connected to the main waterway at 
this site. 

Sub-field C of Site 1 and Site 4 sub-field B (Fig. 6) show largely a low 
risk of transfer (risk value 1 – 3), due to deficient and optimum soil P 
status and the prevailing intra-field drainage. These results were 

similarly reflected for Sites 2 and 3 (Fig. 6). For Site 2, even though 
extensive diffuse P sources were present, the overall risk was weighted at 
low to medium. Some higher-risk flow pathways coinciding with 
elevated soil P were identified (weighted at 7 – 8 in sub-field B). The 
occurrence of predominantly intra-field drainage reduced the likelihood 
of P transfer due to the site’s flat topography. For Site 3, given the largely 
optimum soil P status, this site was weighted at low to medium risk. 
Interestingly, a higher risk of 6 was weighted in sub-field C, with runoff 
flow pathways flowing towards the waterway at this site, elevating the 
risk for waterway transfer of soil P by runoff. Site 6 showed that Index 4 
soil P was weighted at a risk value of 6, indicating a high transfer risk at 
this site, despite this particular area not being hydrologically connected. 

For sites of steep topography, such as Site 1 sub-fields A and B, Site 4 
sub-field A and Site 5 (Fig. 6), the increased flow accumulation and 
associated hydrological connectivity are evident. Site 4 sub-field A 
demonstrated the importance of sub-field scale soil P data to inform risk- 
weighting. Sections of the field deficient or optimum in soil P were 
weighted at low risk. Elevated zones of diffuse soil P showed an 
increased transfer risk and with the occurrence of flow pathways in these 
areas, the risk was weighted higher at up to 6. Again, identified flow 
pathways’ delivery points to the waterway at this site should be targeted 
for intervention techniques. Site 5 was identified to have widespread 
diffuse soil P present, which was evident in risk weighting, with risk 
weighting values assigned up to 9. Numerous flow pathways were 
identified that flowed towards the waterway (due to topography and 
predominant slope). These pathways were classified at risk 5 – 9. Similar 
to Sites 1 and 4 sub-fields A, the targeting of runoff delivery points at Site 
5 is required. However, given the high-risk weighting assigned to this 
site and high hydrological connectivity, targeting the entire field base 
would be advisable and reducing elevated soil P content is required. 

3.3. Weighted overlay risk model validation using water quality data 

To validate quantified model risk weightings, discharge weighted 
average concentrations (µg L-1) were used to compare the water quality 
parameters of SRP and TP and the highest in-field risk-determined value 
per site. Normalised differences between the up and downstream sam
pling points’ parameters are included in Table 5. Discharge weighted 
average concentrations were chosen as a proxy for SRP and TP loads for 
the observation period. Table A.2 shows the average concentrations for 
up and downstream sampling locations per site and the average 
discharge for each sampling location. 

Table 5 shows that generally higher discharge weighted average SRP 
concentrations are present at sites with higher risk weightings. Site 1, 

Fig. 3. Stage (m) duration curve with percentage exceedance values for the Department of Infrastructure Rivers Agency hydrometric monitoring network for the 
Derrymeen gauging station (located downstream of Site 3 shown in Fig. 1) and sampling occasions from Site 3 plotted, water level (m) data from 18.08.20 
to 23.08.22. 
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which had the highest in-field risk value at 10, had the highest discharge 
weighted average SRP concentrations for both up and downstream 
sampling points. Site 2 also showed this, being the second-highest in- 
field risk value at 8. Increases in SRP concentration occurred at both of 
these sites from the up to downstream sampling locations, suggesting the 
transfer of identified soil P sources. Site 3, despite being classed as the 
lowest in-field risk of the four water sampled sites, had a higher 
discharge weighted average SRP concentration than Site 4 (with the 
lowest up and downstream discharge weighted average SRP concen
trations). Both Sites 3 and 4 showed decreases in the normalised dif
ference between the up and downstream sampling points. This suggests 
that low-risk weighted sites (for the transfer of soil P via surface runoff) 
may show decreases in SRP concentrations, suggesting improvements in 
water quality, with Sites 3 and 4 having the lowest risk values at 6. 

For TP in Table 5, Site 1 has the highest upstream discharge weighted 

average concentration. Interestingly (and shown at Site 3) a decline was 
seen in TP from up to downstream sampling locations, although this 
decline was minimal. Conversely, Site 2 (also highly risk-weighted at 8) 
showed a large increase in discharge weighted average TP concentra
tion, suggesting extensive transfer at this site. An even larger increase 
was recorded for Site 4 (risk-weighted of medium–high risk at 6) sug
gesting extensive TP transfer here, despite lower risk-weighted values. 

Comparisons between risk-weighted values and discharge-weighted 
average concentrations of the analysed water quality parameters sug
gest that a stronger relationship exists between SRP fractions and risk- 
weighting approaches compared to TP. Furthermore, these relation
ships are stronger whenever using the 35 m gridded soil sampling 
approach. Higher SRP water quality concentrations instream may indi
cate that surrounding agricultural input fields have elevated soil P 
sources and increased transfer potential. Water quality data analysis 

Fig. 4. Soil P nutrient status determined by bulked W soil sampling side-by-side with interpolated soil P nutrient status determined by 35 m interval gridded soil 
sampling for Sites 1 – 6. 
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largely confirms risk weightings inferred with poorer status for higher 
risk-weighted sites. Variations in TP may originate from additional 
loading sources from upstream contributing source areas or through the 
release of P by processes occurring in-stream. 

4. Discussion 

4.1. Implications of gridded soil sampling compared to bulked W sampling 
for managing agricultural sources of phosphorus 

From the comparisons in Section 3.1 between bulked and gridded 
sampling, it is evident that bulked sampling will not represent the full 
range of soil P content present due to this sampling method only 
considering an average singular field value, and will both under and 
over predict soil nutrient content. Results indicated that wide sub-field 

scale variability exists for P both between and within field and sub- 
field sites, Site 4 sub-field A in Fig. 4 exhibited the greatest within- 
field variability in soil P content of the sampled sites. Gridded sam
pling and associated geostatistical interpolation techniques allow 
within-field variation in nutrient content to be visualised and to quantify 
P losses (Fu et al., 2010; Fu et al., 2013; Lawrence et al., 2020). This will 
help to improve water quality from an agricultural perspective for 
nutrient management and aid in attaining the objectives of the WFD. 
Closing the gap between the scale of nutrient management and catch
ment water quality is vital, both to improve nutrient stewardship of 
agricultural areas and to improve waterway management. Of particular 
difficulty for managing agriculture is the identification of point and 
diffuse nutrient sources and their likelihood of transfer. These are highly 
variable and can relate to site-specific features such as farm roadways 
and field drains. This was demonstrated for Site 1 sub-field A around one 

Fig. 4. (continued). 

E. Hayes et al.                                                                                                                                                                                                                                   



Catena 225 (2023) 107027

9

particular hotspot, which, when analysed relating to field data, was the 
location of deposited animal bedding. In terms of site management, 
reducing fertilisation rates and a cessation of spreading animal bedding 
and manure are vital (Szogi et al., 2015). 

Godwin and Miller (2003) indicated that one bulked sample per 
hectare is commonly used in precision agriculture, however, bulked 
sampling beyond this size was not recommended as the potential for 
nutrient variability increases with increased area. This aligns well with 
the results, whereby bulked sampling for the small sub-field sites of ~ 1 
ha (Site 1 and Site 4 sub-fields C and B respectively) adequately repre
sented soil P content. The use of bulked sampling is of concern for Sites 3 
– 4 which are predicted below or at the optimum, yet as shown in Sec
tion 3.1, both deficient and hotspot zones exist. If P application rates 
were based on bulked sampling for these sites in Fig. 4, inappropriate P 
levels would be applied, both in terms of failing to raise deficient areas 
to optimum and increasing P accumulation rates. Each sub-field must be 

treated individually for nutrient management and it cannot be assumed 
that sub-fields within the same site will behave the same due to differ
ences in fertilisation rates and farming practices, soil and geological 
properties, and variations in topography (Kozar et al., 2002). 

4.2. Managing soil P sources for improved water quality 

Understanding if identified P sources are at-risk for transfer to wa
terways is important. This was demonstrated in Section 3.2 whereby it 
was shown that not all identified soil P sources were at-risk of transfer 
via modelled surface runoff flow pathways. When the risk assessment 
was performed for bulked soil P content compared to 35 m interpolated 
soil P content, for the majority of the sites, the risk of potential P losses 
was underestimated, due to the categorisation of whole fields in this 
approach as singular soil P content. 

By risk assessing the variability in soil P content and the likelihood of 

Fig. 5. Weighted risk assessment outputs generated by the combination of theSTI to bulked soil P content for Sites 1 – 6.  
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runoff occurrence, the risk for runoff-based P losses can be inferred. 
Previous research such as Thomas et al., (2016b) and Cassidy et al. 
(2019) did not consider whole-field risk by using bulked soil sampling 
and STI analysis focused on specific ranges of STI values. The visual
isation of the highest risk transfer zones (and an assessment of their 
hydrological connectivity to the wider waterway landscape) can infer 
the optimal zones for the introduction of strategies to intercept and 
reduce surface runoff losses. Targeting intervention techniques to the 
specific field zones representing the highest risk for P losses means that 
less land is removed from agricultural production to facilitate installa
tion and less financial wastage in terms of introducing schemes on a 
widespread basis. Local site-specific management-based approaches are 
key to appropriately managing agriculture and improving water quality 
(Robins et al., 2017). This will overhaul the current direction of water 
management and focus on needing detailed high-resolution data, how
ever, new remote sensing opportunities are emerging, e.g. LiDAR to 

Fig. 6. Weighted risk assessment outputs generated by the combination of the STI to 35 m interpolated soil P status for Sites 1 – 6.  

Table 4 
Field average and maximum risks calculated for weighted risk modelling ap
proaches for bulked W and 35 m gridded soil sampling approaches.  

Bulked W Risk Model 35 m Risk Model 

Site Average field 
risk 

Maximum field 
risk 

Site Average field 
risk 

Maximum field 
risk 

1  4.10  8.00 1  4.50  10.00 
2  3.80  6.00 2  4.20  8.00 
3  2.40  6.00 3  2.20  6.00 
4  3.50  7.00 4  3.40  6.00 
5  7.00  9.00 5  6.50  9.00 
6  4.00  6.00 6  4.00  6.00  
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categorise the sub-field scale likelihood of P transfer. 

4.3. Limitations of research 

Whilst the risk model aims to predict the risk of runoff-based soil P 
losses, other variables such as soil moisture content, soil hydraulic 
conductivity, slope, and average rainfall intensity are important when 
controlling runoff occurrence, which can be highly dependent on ante
cedent conditions and thus cause runoff to be highly variable (Doody 
et al., 2010: Cassidy et al., 2017: Wu et al., 2021; Gray et al., 2021). 
Further research considering the effects of these temporal components 
within risk modelling on gridded soil sampling P data is needed to un
derstand the risk for runoff-based P losses. Research by Deasy et al. 
(2009) on UK-based catchments suggested that subsurface field drains 
(present at Sites 1 and 4) which are often present in generally poorly 
draining soils (characteristic of the six study sites) may provide a 
dominant mechanism for nutrient and sediment transport to water
bodies. Given the variable spatial nature of both subsurface drain 
presence and runoff generation, and, that the results within Section 3.2 
show that not all P hotspots were at a high risk of surface runoff transfer, 
increased research and modelling approaches to understand P transfer 
via subsurface drainage is required, particularly research which will 
consider the implication of sub-field scale soil P variability. 

Validation of the risk modelling approach using water quality data 
indicated that higher SRP water quality concentrations suggests that 
surrounding agricultural fields are contributing to P losses due to soil P 
accumulations. This validation approach provides a ‘sense-check’ to this 
modelling approach but the water sampling data does not represent 
continuous sampling data (i.e. that obtained using autosampler pro
grammes) or represent water quality across all discharge levels and does 
not consider potential in-stream effects on P concentrations. 

5. Conclusion 

Soil sampling regimes must quantify nutrient content at the correct 
spatial scale, i.e. the sub-field scale and explore the risk of nutrient 
losses. This study developed a weighted risk assessment model to 
quantify soil P nutrient status variability in grassland sites and investi
gated the risk of P losses via hydrological connectivity. There was a wide 
degree of variability at the sub-field scale, for both P content and po
tential risk of runoff-based P losses, even for agricultural areas under 
similar landscape and management conditions. Furthermore, knowledge 
of the potential transfer risk that these P hotspots pose for poor water 
quality at a sub-field scale is necessary for effective and targeted inter
vention strategies to reduce the incidence and prevalence of poor water 
quality. A similar weighted risk assessment model could be applied to 
any locations where excess P poses a threat to water quality, helping 

countries to meet their national water quality targets. 
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