
Methods and approaches to advance 1 

soil macroecology 2 

Abstract 3 

Motivation and aim: Soil biodiversity is central to ecosystem function and services. It represents 4 

most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet research into 5 

broad, generalisable spatial and temporal patterns of soil biota has been limited compared to 6 

aboveground systems due to complexities of the soil system. We review the literature and identify key 7 

considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil 8 

taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. 9 

We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that 10 

represent a range of body sizes and ecologies, and, therefore, interact with their environment at 11 

different spatial scales. 12 

Results: The complexities of soil, including fine-scale heterogeneity, 3D habitat structure, difficulties 13 

with taxonomic delimitation, and the wide-ranging ecologies of its inhabitants, require the classical 14 

macroecological toolbox to be expanded to consider novel sampling, molecular identification, 15 

functional approaches, environmental variables, and modelling techniques. 16 

Main conclusion: Soil provides a complex system within which to apply macroecological research, 17 

yet it is this property which itself makes soil macroecology a field ripe for innovative methodologies 18 

and approaches. To achieve this, soil-specific data, spatiotemporal, biotic, and abiotic considerations 19 

are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole 20 

ecosystems and new approaches to link genes, functions and diversity across spatial and temporal 21 

scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and 22 



aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is 23 

key to understanding the link between biodiversity and ecosystem functioning in terrestrial 24 

ecosystems. 25 

Introduction 26 

Macroecology strives to understand the generality of emergent patterns of aggregate ecological 27 

entities (McGill, 2019). The area has moved beyond large scale biodiversity maps for many 28 

aboveground taxa, addressing process-based patterns including, latitudinal gradients of diversity 29 

(Stehli, Douglas & Newell, 1969), species-area relationships (Rosenzweig, 1995), species-energy 30 

relationships (Gaston, 2000) and broad-scale responses of diversity to anthropogenic pressures 31 

(Newbold et al., 2015), across spatial and temporal scales. There are, however, still significant 32 

knowledge gaps surrounding many questions of macroecology and biogeography, and new techniques 33 

to investigate these, in soil ecology (Eisenhauer et al., 2017). 34 

Soil biodiversity regulates nutrient cycling and makes other central contributions to net primary 35 

production and carbon sequestration (Bardgett & Wardle, 2010; Wagg, Bender, Widmer & van der 36 

Heijden, 2014) across spatial scales (Delgado-Baquerizo et al. 2020). Given the importance of soil 37 

biodiversity, knowledge of spatial and temporal distributions of soil organisms is essential for both 38 

management of terrestrial ecosystems and predicting future ecosystem functioning under global 39 

environmental change (Wagg et al., 2014; Crowther et al., 2019). Recently, there has been an 40 

increased interest in describing the generality of emergent patterns of soil biodiversity (e.g. 41 

Shoemaker, Locey & Lennon,, 2017; Shade et al., 2018; Thakur et al., 2019), although, difficulties in 42 

observing many soil organisms directly has limited this. Further, it has been challenging to formulate 43 

a common macroecological framework across soil taxa given the sheer range in body sizes and 44 

ecologies, from bacteria to macrofauna, which vary in the scale at which they perceive the 45 

environment. Methodological and taxonomic challenges have hindered macroecological research into 46 

belowground systems concerning species richness, spatial distributions, ecosystem functioning and 47 



spatial scaling (Schröder, 2008; Decaëns, 2010; Shade et al., 2018). The challenges of soil 48 

macroecology, therefore, arise not only across spatial and temporal scales, but across the 49 

organisational hierarchy of species, communities, and ecosystems. 50 

At a species level, species distribution models (SDMs) are frequently employed to relate the spatial 51 

distribution of aboveground species to their environment (Elith & Leathwick, 2009), yet there are 52 

very few examples of SDMs applied to soil-dwelling species other than earthworms (e.g. Palm, van 53 

Schaik & Schröder, 2013; Marchán et al., 2015). For many soil taxa, this is a result of not having 54 

sufficient species-level occurrence data from various geographic locations spanning environmental 55 

gradients at relevant spatial scales (Schröder, 2008). For other taxa (i.e. collembola, but see Caruso et 56 

al., 2009) these data are already available, which begs the question of why the modelling of 57 

belowground species distributions has been so limited. There is, therefore, a huge opportunity to 58 

expand soil macroecological research through species distributions modelling, as long as we are able 59 

to overcome the challenges of the soil system itself.  60 

Community biodiversity patterns include well-established macroecological relationships, such as the 61 

species-area relationship and latitudinal gradients (e.g. Rosenzweig, 1995), distance-decay curves 62 

(Nekola and White, 1999), as well as models linking biodiversity patterns to environmental variables 63 

such as the species-energy relationship (e.g. Evans et al. 2008). These relationships have formed the 64 

basis of macroecological theory and our knowledge of how diversity is arranged in space and time, at 65 

a range of spatial, temporal, and hierarchical scales. Although community assembly in soil organisms 66 

has been investigated (Caruso et al., 2012; Dirilgen et al. 2018), generalisable spatial and temporal 67 

patterns of soil biodiversity have yet to be determined to the degree that they have above ground (but 68 

see Caruso et al., 2019). For microbes in particular, studies have tended to focus on individual taxa 69 

and metabolic genes, yet it is the emergent properties of communities which influence ecosystem 70 

functioning and services (Ladau and Eloe-Fadroush, 2019), and, therefore, need to be considered if 71 

we are to expand the field of soil macroecology. 72 



At the ecosystem level, there have been huge advancements in our ability to model whole ecosystem 73 

functioning, particularly within the context of global change (Allan et al., 2015; De Laender et al., 74 

2016). The development of measures of functional diversity (the range and variation of ecological 75 

traits present within an area) has facilitated this. Aboveground, these measures have been used to 76 

investigate key conservation issues such as biotic homogenisation (White et al., 2018a). Given the 77 

importance of soil and soil biodiversity in ecosystem functioning and global cycles (Delgado-78 

Baquerizo et al., 2020), functional traits have much to offer soil macroecology. The measurement of 79 

functional traits is becoming increasingly feasible from a technical perspective (e.g. proteomics and 80 

isotope tracer-enabled analysis of proteins and metabolites, trait database availability), and they can 81 

be directly linked to ecosystem level processes (Hooper et al., 2005). There is a need, therefore, to 82 

continue to develop methods to measure functional diversity and broad scale functioning of soil 83 

organisms, and understand, for example, how these respond to environmental gradients. Applied 84 

properly to soil organisms, macroecological approaches will provide us with another tool to tackle 85 

global challenges related to soil functioning and soil protection. 86 

Aims and scope of this review 87 

To  move beyond mapping of soil taxa in space and identify broad, generalisable spatial and temporal 88 

patterns of soil biodiversity and their underlying mechanisms, we need to consider: the biodiversity 89 

data; the spatio-temporal context of the system and mechanisms under investigation; the biotic 90 

components shaping these patterns; and the abiotic components shaping these patterns. We discuss 91 

each of these sets of considerations and review current methods and future directions for each. Our 92 

intention is not to provide a systematic review of macroecological patterns of multiple soil taxa, but 93 

instead, to focus on the specific characteristics of the soil system that have limited soil macroecology, 94 

and review and propose methods that would help address these limitations. To accomplish this, we 95 

use earthworms, mycorrhizal fungi and soil bacteria as focal taxa. These groups have all had their 96 

global biodiversity modelled (earthworms, Phillips et al., 2019; fungi, Kivlin et al., 2011; Tedersoo et 97 

al., 2014; Pärtel et al., 2017; soil bacteria, Delgado-Baquerizo et al., 2018), and they reflect the 98 



diversity of taxa which inhabit soil through their variation in body size, life forms and ecology which 99 

leads to differences in the spatial scale at which they perceive and interact with their environment. 100 

They, therefore, provide a range of robust examples of the issues that have hindered soil 101 

macroecological research to date, and the diversity in approaches required to overcome these 102 

difficulties. 103 

Data considerations 104 

Data availability 105 

Initiatives exist to establish standardised sampling protocols to collect new data on soil biodiversity 106 

(Philippot, Ritz, Pandard, Hallin & Martin-Laurent, 2012), e.g. the Earth Microbiome Project 107 

(Thompson et al., 2017) and EcoFINDERS (Lemanceau, 2011), as well as bring together existing soil 108 

biodiversity data (see Table 1) into accessible databases and frameworks, e.g. the Global Soil 109 

Biodiversity Initiative (www.globalsoilbiodiversity.org) and Ramirez et al. (2015). Pärtel et al. (2017) 110 

use a standardised dataset of metabarcode information (MaarjAM database, Öpik et al., 2010) to 111 

model spatial variation in species pool, local and dark diversity (members of the species pool which 112 

are absent locally) alongside their respective environmental correlates. These standardised data 113 

provide a suitable means for investigating large scale biodiversity patterns (e.g. species-area 114 

relationships, latitudinal gradients etc.), and, in fact, better satisfy the criteria of comparability across 115 

sites and studies than many datasets of macro-organism distributions which show large variation in 116 

sampling methodology and effort. 117 

The Global Soil Biodiversity Initiative and Ramirez et al. (2015), on the other hand, aim to maximise 118 

the potential of existing data by establishing global platforms that combine databases of all types of 119 

soil biodiversity data, including molecular, taxonomic, and morphological measurements and traits. 120 

Assembling data from multiple sources is complicated due to variability in taxonomic resolutions, 121 

unresolved taxonomies (Cameron, Decaëns, Lapied, Porco & Eisenhauer, 2016) and lack of 122 

http://www.globalsoilbiodiversity.org/


standardisation of sampling techniques that cause technical factors (e.g. sampling protocol, primer and 123 

sequencing platform) to be an important source of inter-study variability (Ramirez et al., 2018). Some 124 

studies choose to only include data collected using specific methodologies to reduce inter-study 125 

variability (e.g. European earthworm diversity maps, Rutgers et al., 2016; 2019), yet, non-126 

standardised datasets can still provide important global insights into the ecological preferences and 127 

geographical ranges of species (Ramirez et al., 2015). These data will complement standardised 128 

sampling protocols when analysed appropriately, for example using meta-analytical or machine 129 

learning approaches (Hendershot, Read, Henning, Sanders & Classen, 2017; Ramirez et al. 2018). 130 

Substantial geographic gaps in sampling, however, need to be addressed (Cameron et al., 2018) if we 131 

are to determine generalisable patterns of biodiversity, and model predictions should be refined and 132 

updated as empirical datasets become increasingly available. 133 

Measuring and defining soil biodiversity 134 

To study many macroecological patterns such as species-abundance distributions, species-area 135 

relationships and latitudinal gradients, we first need to identify the species.  However, challenges 136 

remain with identification of many soil taxa (Soininen, 2012); the huge diversity of soil organisms 137 

combined with their small size (Schaefer et al., 2010), has led to a distinct lack of taxonomic 138 

knowledge of soil biodiversity (Decaëns, Lavelle & Jiménez, 2008; Phillips et al., 2017). 139 

Biogeographic realms at multiple spatial scales, therefore, exist, where every new place sampled, 140 

especially remote locations, can give huge volumes of undescribed species or sequences that cannot 141 

be matched to any known species or genus-level taxon (Decaëns, 2010; Fierer, 2017). Indeed, even 142 

urban systems such as Central Park in New York City, can harbour large volumes of undescribed soil 143 

biodiversity (Ramirez et al. 2014), and earthworms, a comparatively well-studied group with 144 

relatively low diversity, have had a large number of cryptic species revealed through DNA barcoding 145 

(King, Tibble & Symondson, 2008). 146 

Gene-based diversity assessments of environmental DNA (eDNA) are a promising toolset for 147 

facilitating large scale sampling of soil diversity (Bik et al., 2012; Deiner et al., 2017).  Species can be 148 



identified using short metabarcodes and small samples of soil (e.g. earthworms, Bienert et al., 2012). 149 

eDNA has already furthered macroecological research, for example, through the detection of 150 

earthworm diversity at the landscape-scale, revealing impacts of abiotic factors not detected using 151 

traditional survey methods (Pansu et al., 2015). Nevertheless, the degree to which eDNA-based 152 

diversity estimates capture the living soil biota (rather ‘relic’ DNA) is unclear (Lennon et al., 2018; 153 

Ruppert, Kline and Rahman, 2019). Furthermore, this technique can vary with soil organic matter 154 

content and type, complicating the comparison of biodiversity patterns across environments and 155 

highlighting the continued, pressing need for the standardization of methodologies (Philippot et al., 156 

2012; Geisen et al., 2019).  157 

In particular, many molecular studies use targeted sequencing of specific marker genes or gene 158 

regions, which serve as ‘barcodes’. Sequence differences within the “variable regions” of the marker 159 

genes are used to identify operational taxonomic units (OTUs), which may serve to delineate taxa 160 

below the genus level (e.g. earthworms, Pansu et al., 2015; fungi, Pellissier et al., 2014; Tedersoo et 161 

al., 2014). However, there is no universal threshold for an eukaryotic OTU, and this may well be 162 

clade-specific, and dependent on the barcode length and region of choice (Mysara et al., 163 

2017).  Despite recent technological advances in sequencing and bioinformatic pipelines to process 164 

high-throughput amplicon sequences, considerable challenges remain when using gene-based 165 

methodologies (Nesme et al., 2016). Errors or biases can arise from different DNA extraction methods 166 

(İnceoǧlu, Hoogwout, Hill & van Elsas, 2010), primer specificity, sequencing chemistries (i.e. short 167 

read length, Tedersoo et al., 2015; Tremblay et al., 2015), and bioinformatic processing, as well as 168 

difficulties with OTU delimitation and chimeras (Orgiazzi, Dunbar, Panagos, de Groot & Lemanceau, 169 

2015), and lack of matching current database entries (e.g. fungi; Tedersoo et al., 2014, bacteria; 170 

Ramirez et al., 2014; Thompson et al., 2017). These can confound diversity estimates in cross-study 171 

comparisons (Fierer, 2017; Thompson et al., 2017). Recent developments in clustering algorithms, i.e. 172 

a reference-free approach to resolve sequence variants at a single nucleotide resolution (Callahan, 173 

McMurdie & Holmes, 2017; e.g. Deblur, Amir et al., 2017), could offer stable identifiers across 174 

different studies (Thompson et al., 2017), facilitating data reusability and integration of multiple data 175 



sets (Amir et al., 2017), thus maximising the potential of gene-based surveys in soil macroecology 176 

(Geisen et al., 2019). Alternatively, DNA-targeted enrichment (bait capture) allows more efficient 177 

recovery of sequence information, not relying on sequence affinity as strongly as PCR (Dowle et al. 178 

2016). DNA enrichment can be applied to a range of different sample sources, in individual or pooled 179 

samples and can be used for recovering exogenous DNA present in environmental samples (Shokralla 180 

et al. 2016). 181 

Many studies now focus on alternative dimensions of biodiversity to taxonomic diversity. Functional 182 

diversity, which measures the diversity and range of traits within a community, can be closely linked 183 

to ecosystem functioning (Heemsbergen et al., 2004; Hooper et al., 2005). Shifting from taxonomic to 184 

functional information can provide a way to unify the study of soil macroecology: the units are no 185 

longer species, or taxa, but functions and the diversity of functions expressed, which are relevant 186 

across taxonomic groups. Macroecological patterns that emerge from traits include trait-area and -187 

time relationships (e.g. White et al., 2018b), and functional diversity gradients (e.g. Meynard et al., 188 

2011), which further our knowledge on the spatial, temporal and environmental structuring of 189 

ecological traits and ecosystem functioning (Violle et al., 2014), and provide new insights into 190 

community assembly theory (Smith et al., 2013). Due to the key ecosystem functions that soil 191 

biodiversity provides (Heemsbergen et al., 2004), we advocate a concerted shift towards functional 192 

approaches within soil macroecology through the following methodological and data options.  193 

Trait databases facilitate the investigation of trait composition of soil communities. Morphological, 194 

physiological and phenological traits are present in the literature for many soil invertebrates due to 195 

their relative ease of measurement (e.g. carabid beetles, Barbaro & van Halder, 2009: earthworms, 196 

Hedde et al., 2012; collembola, Martins da Silva et al., 2016; Bonfanti et al., 2018: ants, Bishop et al., 197 

2016). For soil bacteria and fungi, on the other hand, characterisation of morphological, physiological 198 

and phenological traits can be more challenging since isolation of individual species for trait 199 

measurements is not feasible in most cases (Krause et al., 2014, Zanne et al., in press). Two recently 200 

published, large global databases, FungalRoot (Soudzilovskaia et al. 2020) and the Fungal Functional 201 

Database (FUNfun, Zanne et al. 2020) however, will facilitate better understanding of trait 202 



composition of fungal communities, their interactions with plants, and their effects on worldwide on 203 

ecosystem functioning (Powell & Rillig 2018). However, as with many taxa, fungal trait databases are 204 

often incomplete (Zanne et al. 2020). There has also been a concerted effort to quantify microbial 205 

functions in soil due to their importance for key ecosystem functions (Aguilar-Trigueros et al. 2015; 206 

Zanne et al. 2020) through standardized ‘omics’ and enzymatic approaches (Dawson et al., 2019), as 207 

well as the measure of climate tolerances to investigate life history trait trade offs at large spatial 208 

scales (Maynard et al., 2019).  209 

‘Omic’-based functional analyses (e.g. proteomics, metabolomics) have been used to determine 210 

broad-scale patterns in fungi (Tedersoo et al., 2014) and bacteria (Fierer & Jackson, 2006; Delgado-211 

Baquerizo et al., 2018). These methods enable the categorisation of soil microbes by their ecological 212 

strategies (e.g. Fierer, 2017), therefore bypassing the taxonomic deficit problem and focusing on 213 

functional diversity. Functional ‘omics’ approaches can be used in experimental community ecology 214 

studies to provide information on potential ecosystem functioning (Maron, Ranjard, Mougel & 215 

Lemanceau, 2007), such as the diversity of protein-coding gene categories e.g. antibiotic resistance 216 

genes and osmoregulatory genes (Fierer et al., 2012; Bahram et al., 2018), and soil enzyme substrate 217 

specificity (Caldwell, 2005) in nutrient cycling, as well as community structure and dynamics within 218 

the soil (Arsène-Ploetze, Bertin & Carapito, 2015). Unlike gene-based approaches, protein-based 219 

‘omic’ approaches (metaproteomics) capture the active component of soil biomass (Blagodatskaya & 220 

Kuzyakov, 2013), and thus avoid overestimating diversity from dormant or dead biomass (Carini et 221 

al., 2016; but see Papp et al., 2018).  222 

Despite limitations (i.e., transcriptomics may reveal potential, rather than fulfilled functions, Prosser, 223 

2015), elucidating the underlying molecular mechanisms supporting functions could help to unlock 224 

the functional networks that interact to sustain soil properties (e.g. Bonfante and Genre, 2010). Semi-225 

controlled experiments can build novel bridges with complex natural systems. For example, we 226 

recommend mesocosm experiments coupled with “omics” approaches designed to identify 227 

longitudinal biological responses of soil biota to microbiomes (e.g. soil and rhizosphere) and plants, 228 

although destructive sampling is a limitation. Further still, defining a global transcriptome-based 229 



delineation of functional entities, and obtaining a landscape of their similarities and differences based 230 

on differential expression of genes across different combinations of hierarchical levels and abiotic 231 

factors, for example, could help to derive the sets of genes involved in specific ecological processes 232 

that could be targeted in the field using metagenomics as a ground-truthing approach. Integrating 233 

multiple “omic” approaches, therefore, into community studies will lead to a rapid transformation in 234 

our empirical  understanding of soil functioning and interactions (Swenson and Jones, 2017), and 235 

complementary approaches to DNA sequencing remain a priority for soil biodiversity research 236 

(Eisenhauer et al., 2017) as they will reveal new information on the mechanisms underlying 237 

ecosystem processes. 238 

 239 

Spatio-temporal considerations 240 

Scale and structure 241 

Intra- and interspecific aggregations (Ettema & Wardle, 2002), which result from the microscale 242 

heterogeneity of the soil system and limited dispersal of organisms, structure soil communities across 243 

spatial scales (Noguez et al. 2005; Decaëns, 2010; Bach et al., 2018; Thakur et al., 2019). In a 244 

Brazilian agricultural system, for example, geographical distance explained nearly 18-times more 245 

variance in soil fungal community composition than environmental factors such as soil and climate 246 

characteristics (Gumiere, Durrer, Bohannan & Andreote, 2016). Biogeography of soil bacteria has 247 

been investigated at a range of scales from continental and global scales (e.g. Fierer & Jackson, 2006; 248 

Barberán et al., 2012; Bahram et al., 2018) to the landscape scale (Bru et al., 2011; Pasternak et al., 249 

2013), and even at the centimeter scale (O’Brien et al., 2016). By taking multiple soil cores separated 250 

by only a few centimetres at sampling plots spaced 6 m apart, O’Brien et al. (2016) showed that there 251 

was extreme patchiness in community structure at the centimetre scale, but more general patterns in 252 

diversity, linked to fertilisation, were observed at the plot-level. This scale-dependent heterogeneity 253 

arises from the operating scale of mechanisms underlying community assembly. This needs to be 254 



accounted for in sampling design for investigations of spatial patterns of soil diversity with multiscale 255 

sampling protocols (e.g. Rasmussen et al., 2018). Additionally, macroecological analyses of soil 256 

diversity need to use techniques that model space, such as autoregressive models (Beale, Lennon, 257 

Yearsley, Brewer & Elston, 2010), to address the strong spatial structuring in soil ecosystems, as 258 

demonstrated by spatial analyses of earthworm abundance, biomass and diversity (Joschko et al. 259 

2006), and ectomycorrhizal fungi (Pickles, 2010). Similarly, techniques such as Principal Coordinates 260 

of Neighbourhood Matrices (PCNM) are useful in differentiating between spatial and environmental 261 

structuring of communities at different spatial scales (e.g. Columbian earthworm communities, 262 

Jiménez, Decaëns, Lavelle and Rossi, 2014). 263 

The scale at which similar processes act varies between taxonomic groups due to variation in body 264 

size and life history, and is an important consideration when studying spatial patterns of soil 265 

communities (Montagna et al., 2018). When studying landscape scale processes, Jackson and Fahrig 266 

(2012) highlight the concept of the ‘scale of effect’ (the scale at which an ecological response is best 267 

predicted by the habitat structure) and recommend sampling areas far enough apart to ensure sample 268 

points are independent (i.e. taxa in one sample point do not directly interact with those in others). 269 

Thakur et al. (2019) present a conceptual framework splitting soil into spatial compartments at which 270 

different nested groups of soil organisms can be studied to test biodiversity theories: soil, where all 271 

size groups of organisms can be sampled; hotspots (rhizosphere and drilosphere), where meso- and 272 

micro-fauna can be sampled; and microsites (root tips and aggregates), where micro-fauna can be 273 

sampled. This compartmentalisation allows integration of body size into the investigation of classical 274 

ecological theory. Beyond simply considering ‘scales of effect’ and spatial compartmentalisation, we 275 

suggest researchers further draw upon work on investigating scaling issues in complex landscapes to 276 

build on the conceptual framework of Thakur et al. (2019) and inform sampling designs. For example, 277 

the problem of "coarse-graining" occurs when fine-scale information is aggregated to larger scales to 278 

reduce model complexity (Newman et al. 2019). By tracking how this leads to loss of information 279 

explicitly and investigating scaling relationships, corrections for statistical biases may be possible 280 

(Wu, 2004; Newman et al. 2019). 281 



The species-area relationship is a classical macroecological relationship which is well-established in 282 

aboveground biota. Judas (1988) applied the species-area relationship to published data on European 283 

lumbricid earthworm diversity, revealing a lower scaling exponent than those established in 284 

aboveground systems. One approach to investigate species-area relationships for ectomycorrhizal 285 

fungi is to use tree ‘islands’ of host plants, which, due to their obligate symbiosis, create an island 286 

species-area relationship (Peay et al., 2007). This approach, however, may not be transferable to other 287 

microbial organisms. Taxa-area relationships have also been applied to soil bacteria and fungi using 288 

samples taken from the corners of four nested quadrats (Sayer et al., 2013). This method, however, is 289 

likely to underestimate diversity at each quadrat size as it is only partially sampled and is more 290 

representative of a taxa-areal extent relationship. It does, however, still provide a useful study design 291 

to investigate key macroecological patterns of spatial scaling and turnover of community composition 292 

of multiple soil taxonomic groups.  293 

As well as accumulation in space, temporal accumulation of species is an important part of 294 

macroecology, and community turnover and can be investigated using the species-time relationship. 295 

In aboveground literature, the species-time relationship has been studied far less frequently than the 296 

species-area relationship (White et al., 2006), and belowground, this lack of studies is even more 297 

pronounced (Ladau and Eloe-Fadrosh, 2019). The temporal component of soil biodiversity, however, 298 

is critical to consider. As well as hot spots of diversity, Kuzyakov and Blagodatskaya (2015) highlight 299 

‘hot moments’ of soil microbial diversity which can occur either occasionally or regularly as a 300 

component of periodic processes within a system, often dependent on the temporally dynamic input of 301 

C into soil. Additionally, species interactions operate at multiple temporal scales and vary within and 302 

between taxa. For example, the connectivity of soil networks on abandoned arable land varies 303 

temporally during restoration (Morriën et al. 2017). Hence, for temporal questions, sampling is 304 

required at temporal scales relevant for the organisms of interest and the ecosystem properties with 305 

which they interact (Ettema & Wardle, 2002; Bardgett et al., 2005; De Deyn & Van der Putten, 2005). 306 

However, the appropriate scale remains an outstanding question in temporal biodiversity change of 307 

most soil organism groups (Eisenhauer et al., 2017; Shade et al., 2018). We, therefore, recommend 308 



sampling at multiple time scales depending on the question at hand to determine the temporal scales at 309 

which soil biodiversity varies, from macroevolutionary investigations (e.g. Schaefer and Caruso, 310 

2019) to short-term dynamics (Kuzyakov and Blagodatskaya, 2015).  311 

Dimensionality  312 

To date macroecological patterns have been primarily conceptualised in a 2D context  (e.g. species-313 

area relationships, distance-decay relationships in geographic space, latitudinal gradients).  However, 314 

where depth and/or height have a strong influence on the biodiversity estimates and community 315 

dissimilarity (e.g. marine systems, tropical forests and soils), there is much to be gained by explicitly 316 

extending these macroecological concepts to a third dimension. Given that soil community 317 

composition varies strongly with soil depth (e.g. fungi and bacteria, Fierer et al., 2003; Eilers et al., 318 

2012; ants, Wong and Guénard, 2017; microfauna, Pausch et al., 2018), and key ecosystem processes 319 

are reliant on sub-soil fauna at different depths (Rumpel & Kogel-Knabner, 2011; Ward, 2016), the 320 

integration of depth as a third dimension into macroecological theory is a key area to which soil 321 

ecologists can contribute. Expanding soil macroecology into this third dimension will be particularly 322 

important for obtaining comparable estimates of true soil diversity, for example through extension of 323 

species accumulation curves to depth profiles. Furthermore, it will enhance our understanding of 324 

species-environment relationships, and provide insights into interaction dynamics in 3D space. In 325 

order to do so, state-of-the-art sampling designs and modelling approaches will be required.  326 

To address these questions it is essential that both soil biota and abiotic properties be sampled across 327 

depth profiles. For macrofauna, sampling must involve multiple methods (e.g. pitfall trapping, direct 328 

sampling, Berlese extraction, subterranean baiting) as each is known to capture different species (Fig. 329 

1). For example, in a review of sampling methods Wong and Guénard (2017) identified seven studies 330 

in which more than 10% (range 12.3 to 44.4%) of all ant species recorded were unique to 331 

subterranean samples; and would have been missed with conventional sampling methods. For smaller 332 

macro-organisms, such as collembolans and arthropods, core samples provide samples from across 333 

the depth profile, but these must be carefully sorted to maintain information on sample depths as 334 



combining multiple soil depths into a single sample can homogenize microscale variation 335 

(Grundmann et al., 2001). For microbial organisms, microsampling of smaller soil quantities across 336 

the depth profile is advised (e.g. Dechesne et al., 2003), or 2D images of soil thin sections at multiple 337 

depths can be used to count bacterial cell distributions and construct 3D distributions (Raynaud and 338 

Nunan, 2014). Sampling of root-associated species such as mycorrhizal fungi, may be facilitated by 339 

incorporating information on the depth distribution of roots (e.g. Sosa-Hernandez et al., 2018). Depth 340 

distributions of many taxa can vary seasonally, for example, some earthworm species aestivate in 341 

lower soil layers during the summer (Gerard, 1967). Therefore, where feasible, sampling should be 342 

conducted seasonally to capture the full breadth of species depth distributions (e.g. Martay & Pearce-343 

Higgins, 2018). 344 

A final opportunity for macro-ecological approaches related to dimensionality arises from the 345 

existence of soil communities ex situ, i.e. in soil micro-habitats above the soil proper. For example, 346 

true soil-dwelling invertebrates including springtails and mites occur in suspended soil at various 347 

heights (up to 35 m) in canopies of subtropical and temperate rainforests (Rodgers and Kitching, 348 

1998; Lindo and Winchester, 2006). In Canadian Western redcedar trees, 18 of the 53 springtail 349 

(Collembola) species recorded from suspended soils did not occur in the forest floor (Lindo and 350 

Winchester, 2006). In Indonesian oil palm plantations, suspended soil in frond axils of palm oil trunks 351 

supported much higher densities and biomasses of soil microfauna and mesofauna than belowground 352 

soil, with suspended soils contributing an estimated 28% of the overall soil fauna metabolism in 353 

plantations (Potapov et al., 2020). These contributions of suspended soils to overall diversity and 354 

community turnover, suggest that there is much to be gained by extending soil sampling above-355 

ground in forest ecosystems (Fig. 1).    356 

Information from vertical sampling may be integrated into the investigation of 357 

important  macroecological patterns through the explicit incorporation of depth/height as a parameter 358 

standard macroecological approaches e.g. Does community similarity decay more rapidly with depth 359 

than horizontal distance?. However, more complex models will be required to investigate species-360 

environment relationships in 3D domains. For such applications, it may useful to turn to the marine 361 



literature where development of SDM techniques for 3D systems is already underway (e.g. Duffy & 362 

Chown, 2017; Pérez-Costas 2019). Similarly, investigations into the scaling of interaction strengths 363 

within species networks can differ between two- and three-dimensional systems in terrestrial and 364 

marine realms, where advanced non-linear statistical approaches, 3D statistical point pattern models, 365 

and 3D agent based modelling have been successfully applied (see Raynaud and Nunan 2014; 366 

Barrios-O’Neill et al., 2019; Pawar et al., 2019). 367 

 368 

Biotic considerations 369 

Dispersal 370 

The dispersal capacity of many soil biota, and thus the environment in which soil communities 371 

develop and interact, is often at a much finer resolution than the scale at which environmental 372 

variables are commonly measured (Grundmann & Debouzie, 2000; Hendershot et al., 2017), and 373 

varies  tremendously between and within different soil taxa (e.g. microbes, dispersing as spores, can 374 

generally disperse at larger scales than most soil animals). However, dispersal syndromes vary at 375 

multiple phylogenetic scales (e.g., fungi vs. bacteria and phylotypes within bacteria in Archer et al. 376 

2019). Therefore, sudden environmental changes that favour specific dispersal modes, may then 377 

favour certain taxa and so drive community structure through an intensified propagule pressure of 378 

those taxa, thus dictating macroecological patterns. This process, as well as others, may operate at 379 

multiple scales. For example, some biogeographical ‘rules’ that apply to the distribution of vertebrates 380 

at the continental scale, e.g. range size-frequency distributions, can be detected in prokaryotes within 381 

an 8 m x 8 m quadrat (Noguez et al. 2005), conflicting with the traditional idea that soil microbes are 382 

not limited by dispersal (Finlay, 2002). Overall, it is now well established that dispersal limitation is 383 

central to explain the distribution of all soil organisms, and that dispersal may differ at different 384 

phylogenetic levels (Davison et al., 2015; Archer et al., 2019). It is, therefore, crucial to include 385 

dispersal capacity into models of belowground species and to  to take into account the fact that 386 



dispersal capacity varies greatly with size, ecology and life stage of the organism (Ettema & Wardle, 387 

2002; Soininen, McDonald & Hillebrand, 2007).  388 

Dispersal kernels are a frequently used tool in invasion ecology that can be used to incorporate 389 

dispersal into species distribution models (Meentemeyer, Anacker, Mark & Rizzo, 2008). These 390 

describe the probability distribution of the distance travelled by an individual from a parent source 391 

and can be used to estimate the probability of colonisation (Franklin, 2010). Novel tools for 392 

implementing cellular automata models into SDMs which map accessibility from source cells are 393 

another promising recent development (Nobis & Normand, 2014). Although implementing such 394 

models can be challenging as the dispersal characteristics of many soil organisms remain largely 395 

unknown (Schröder, 2008), molecular techniques provide tools to measure whole community 396 

dispersal of microbial systems (Peay, Garbelotto & Bruns, 2010; Peay, Schubert, Nguyen & Bruns, 397 

2012). For example, within a biogeographical framework of plant host ‘islands’, Peay et al. (2012) use 398 

next-generation sequencing of propagules to demonstrate a dispersal limitation of one kilometre 399 

across a whole ectomycorrhizal fungal community. For earthworms on the other hand, visual tagging 400 

methods (Butt and Lowe, 2007) and X-ray scanning have been used to measure dispersal in addition 401 

to molecular methods (Mathieu, Caro & Dupont, 2018). Using these newer technologies to determine 402 

active and passive dispersal of soil organisms will allow movement-based theories of ecology to be 403 

tested (Thakur et al., 2019) that contribute to spatial and temporal biodiversity patterns across scales 404 

(Gumiere et al., 2016; Dirilgen et al., 2018).   405 

Interactions 406 

Microbiota, including soil fungi and bacteria, are almost always sampled at scales larger than that at 407 

which individuals interact, therefore lumping together sets of taxa that partition different resources, or 408 

occupy different microhabitats (Fierer & Lennon, 2011; Bach, Williams, Hargreaves, Yang & 409 

Hofmockel, 2018). This can greatly influence observed macroecological patterns, such as the species-410 

abundance distribution (Shoemaker et al., 2017). Multiscale sampling is recommended to provide 411 

novel insights into the processes and mechanisms underlying spatial organisation of communities of 412 



soil taxa of various body sizes. Using soil aggregate isolation techniques when sampling, for example, 413 

will help characterise biodiversity of soil microbes relevant to the spatial scale at which individuals 414 

interact and use resources (Bach et al., 2018).  415 

Network analyses based on Spearman’s rank correlations have been used to determine co-occurrences 416 

of soil bacteria (Barberán, Bates, Casamayor & Fierer, 2012), but due to the complex three-417 

dimensional structure of soil, these networks may not always be indicative of real species interactions 418 

(Morriën, 2016). The simulation approach used by Raynaud and Nunan (2014), for example, shows 419 

that interspecific interactions between bacterial species are substantially lower than what you may 420 

expect given the bacterial diversity frequently measured in soil samples (see Dimensionality section 421 

above). For earthworms, stable isotopes have been used to determine interactions between invasive 422 

species of earthworms within a 2 km2 area in the USA (Zhang et al., 2010), providing a sophisticated 423 

tool to address the challenge of non-transparency of the soil medium in identifying biotic interactions 424 

where they cannot easily be observed. 425 

There is a momentum to improve aboveground models of species distributions by incorporating biotic 426 

interactions (e.g. Staniczenko, Sivasubramaniam, Suttle & Pearson, 2017). While challenging, this 427 

research track is promising for soil macroecology. Indeed, the particular importance of addressing this 428 

challenge for soils is highlighted by the substantial contribution of biotic interactions in shaping soil 429 

organisms’ distributions (Raymond, Wharton & Marshall, 2013; Bahram et al., 2018), and the 430 

complex aboveground-belowground interactions that have been observed globally (De Deyn & Van 431 

der Putten, 2005). Joint SDMs account for species interactions via correlation matrices of co-432 

occurrence (Pollock et al., 2014) and can disentangle species interactions from environmental 433 

correlates in large multispecies datasets (Warton et al., 2015), holding promise for soil 434 

macroecological studies. 435 

Aboveground and belowground systems are linked by food web interactions and nutrient fluxes 436 

through plant litter decomposition (Wardle et al., 2004; de Vries et al., 2013), modulation of soil 437 

physical properties by plant diversity (Gould, Quinton, Weigelt, De Deyn & Bardgett, 2016), and 438 



direct species-species interactions (Bardgett & Wardle, 2010). Soil biodiversity data, therefore, can be 439 

extremely powerful when used in conjunction with aboveground community data (Ramirez et al., 440 

2015). This is particularly true for mycorrhizal fungi, which form mutualisms with plants, and for 441 

which host specificity is an important geographical constraint on species distributions (Sato et al., 442 

2012). Hence, studies of community structure and biogeographic patterns of soil fungi are 443 

significantly improved when data on plant diversity and distributions are included within their models 444 

(Pellissier et al., 2014; Vályi et al., 2016; Koyama, Maherali and Antunes, 2019). To this end, the 445 

FungalRoot database (Soudzilovskaia et al., 2020) provides key data on mycorrhizal associations with 446 

which to study the macroecology and biogeography of these interactions.  447 

Feedbacks between the aboveground and belowground systems, however, are difficult to predict at 448 

large scales, as species interactions are complex (Wardle et al., 2004; De Deyn & Van der Putten, 449 

2005), vary along latitudinal gradients of biodiversity (De Deyn & Van der Putten, 2005) and operate 450 

over a hierarchy of temporal scales (Bardgett, Bowman, Kaufmann & Schmidt, 2005). Small spatial 451 

and temporal scale experimental manipulations (e.g. Gould et al., 2016; León-Sánchez et al., 2018), 452 

therefore, may not truly capture the complexities or multifunctionality of aboveground-belowground 453 

processes (De Deyn & Van der Putten, 2005), which also pose a challenge to traditional modelling 454 

approaches. 455 

To overcome the challenge of integrating network ecology research into macroecology, we encourage 456 

the use of modelling approaches that facilitate complex interactions and pathways between multiple 457 

variable types (Kissling & Schleuning, 2015). For soil systems in particular, it is important to develop 458 

methods, such as correlation networks and structural equation models (SEMs), that emphasise biotic 459 

interactions but also include environmental effects, e.g. through latent and composite variables, to 460 

study causal mechanisms involving variables that are difficult to measure at a spatial scale relevant for 461 

soil organisms, or themselves exhibit complex interactions (e.g. as seen for soil fertility in Siciliano et 462 

al., 2014). SEMs are a useful correlative approach that can be easily implemented and characterise 463 

complex pathways at the ecosystem level, including the complex interaction networks and feedback 464 

loops observed in soil-to-aboveground systems (Eisenhauer, Bowker, Grace & Powell., 2015). Grace 465 



et al. (2010) present SEMs as an approach to address the challenge of eliciting generalisable patterns, 466 

such as those sought in macroecology, from heterogeneous system components. For example, SEMs 467 

have been used to partition causal influences and determine the direct and indirect relationships 468 

between geographic variables, soil characteristics, plant productivity/diversity and soil diversity at 469 

both the continental and global scale for soil bacteria and fungi (Tedersoo et al., 2014; Delgado-470 

Baquerizo, Powell et al., 2017), as well as to determine the causal mechanisms underlying ecosystem 471 

functioning (Eisenhauer, Reich & Isbell, 2012) and food web stability (De Vries et al., 2012). They, 472 

therefore, provide a useful tool for soil scientists and macroecologists to combine biotic and abiotic 473 

factors into studies of causal patterns of soil diversity and functioning.  474 

Abiotic considerations 475 

Climate and microclimate 476 

Fine-scale spatial structuring of soil species may occur where the macroscopic environment appears 477 

uniform (Nielsen et al., 2010; Caruso, Taormina & Migliorini, 2012). For example, the spatial 478 

structure of grass tussocks in pasture alter the microclimate of the soil which impacts earthworm 479 

diversity (Mathieu et al., 2009). To model soil biodiversity, therefore, measurement of environmental 480 

heterogeneity is required at fine scales (e.g. measuring and modelling microclimates). Microclimate 481 

modelling can be expanded to the macro-scale by using gridded continental-scale soil and weather 482 

data to accurately predict hourly local microclimates at multiple soil depths using a mechanistic 483 

modelling framework (Kearney et al. 2014). Microclimate modelling has become more accessible 484 

through advances in remote sensing, e.g. LiDAR, to quantify environmental covariates at high 485 

resolutions (Lembrechts, Nijs & Lenoir, 2019), and development of freely available software and 486 

code, e.g. the R package microclima (Maclean et al. 2019). Furthermore, combining microclimate 487 

modelling frameworks with soil moisture simulation algorithms can provide accurate, high resolution 488 

soil moisture estimates for entire continents (Kearney & Maino, 2018). Moving beyond simple 489 

correlative models towards mechanistic modelling is being encouraged within the SDM literature 490 



(Buckley et al., 2010) and offers a promising alternative for predicting distributions of soil organisms 491 

in particular, where small-scale spatial and temporal heterogeneity of the environment is often more 492 

important than large-scale climatic variables (Dauber et al., 2005; Kearney et al., 2014). 493 

Geodiversity and pedodiversity 494 

Environmental factors other than climate are likely to be particularly ecologically relevant 495 

determinants of species distributions belowground, and geological as well as biological resources 496 

should be considered (Ibáñez, Krasilnikov and Saldaña, 2012). The incorporation of soil types, texture 497 

and geochemistry (i.e. pedodiversity) into analyses of soil biodiversity has been encouraged (Parker, 498 

2010) and carried out at the local scale (e.g. earthworms, Decaëns & Rossi, 2008; Solomou et al., 499 

2013; bacteria, Ranjard et al., 2010), as well as larger scales for earthworms (Rutgers et al., 2016). 500 

Integration of point level soil characteristics data, such as the LUCAS dataset (Orgiazzi, Ballabio, 501 

Panagos, Jones & Fernández-Ugalde, 2018), can provide environmental information at coarse 502 

resolutions (2 km x 2 km) but large geographical extents, i.e. continental, whilst machine learning 503 

techniques combining soil and earth observation data can provide global gridded soil information at a 504 

resolution of 250 m x 250 m (Hengl et al. 2017). The latter has recently been incorporated into models 505 

of global earthworm diversity, but did not appear important in shaping community diversity, likely 506 

due to the scale of the study (Phillips et al. 2019). Diversity of geophysical properties (i.e. 507 

geodiversity) and pedodiversity provide opportunities to scale up soil biodiversity analyses. Spatial 508 

soil information science has become particularly advanced and sophisticated statistical tools to predict 509 

spatial patterns of soil properties (including salinity, soil moisture content and soil bulk density) offer 510 

novel opportunities to obtain predictor variables of soil organism distributions and diversity (Padarian 511 

et al., 2020). We may expect an obvious link between geodiversity or pedodiversity variables and soil 512 

biodiversity, however, incorporation of these factors into models has often been restricted to plants 513 

(e.g. Tukiainen et al., 2017; Bailey et al., 2018), although geochemical variables including salinity and 514 

soil nitrate variables have been linked to nematode abundances in Antarctica (Poage et al., 2008), and 515 



global soil bacteria richness peaks in neutral soils (Fierer & Jackson, 2006). Pedodiversity analyses, 516 

therefore, offer an exciting opportunity to overcome a severe gap in soil macroecological research. 517 

Recommendations and Future Perspectives 518 

Although there has been a recent surge in broad-scale papers mapping soil biodiversity, the field of 519 

soil macroecology needs to be advanced by emphasising process over pattern (Hanson et al., 2012). 520 

Soils differ from aboveground systems in ways that have been challenging for the generalisations dear 521 

to macroecology: they are characterised by high heterogeneity making data collection and analysis 522 

difficult, and are inhabited by organisms that are incredibly variable in size and trophic roles, while 523 

being poorly known taxonomically. We have discussed how recent methods and data management 524 

initiatives might help soil ecologists and macroecologists to collaborate more often. We demonstrate 525 

that methodological considerations need to be made at all stages of investigation spanning 526 

delimitation and quantification of diversity, spatial and temporal context, biotic considerations and 527 

abiotic properties, and propose multiple approaches to deal with challenges within each of these sets 528 

of considerations (Fig. 2). Most of these methods are applicable (and some already applied) 529 

aboveground, but are particularly suited to address the incredible spatial and temporal variability of 530 

biotic and abiotic conditions, combined with the scarcity of data, in soils. When these are overcome, 531 

we expect that new rules may emerge from macroecological analysis of soils. 532 
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Table 1 Examples of existing databases that include soil biodiversity or distribution data. 1046 
 1047 

Database Website Database Name Taxa 
Geographic 

coverage 
Taxonomic 

resolution 
Year 

compiled 

https://data.bioplatf

orms.com/organiza

tion/about/bpa-base 

Biome of 

Australian Soil 

Environments Microbes 
Australia and 

Antarctica 
Molecular 

(OTU) 2016 

http://drilobase.org/  

Drilobase - the 

World Earthworm 

Database Earthworms Global Species 
2014-

present 

http://www.earthmi

crobiome.org/  

Earth Microbiome 

Project Microbes Global 
Molecular 

(OTU) 2017 

https://edaphobase.

org/  Edaphobase Soil fauna 
Germany 

(predominantly) Species 
2014-

present 

http://maarjam.bota

ny.ut.ee/ MaarjAM 

Arbuscular 

mycorrhizal 

fungi Global 

Molecular 

(small sub-unit 

rRNA 

sequences) 2010 

https://catalogue.ce

h.ac.uk/documents/

53210c27-87fc-

46e4-a3d6-

e731003dc541 

Model estimates of 

topsoil microbes 

[Countryside 

Survey] Bacteria Great Britain 

Molecular 

(terminal 

restriction 

fragments) 2007 

https://nbnatlas.org

/ 

National 

Biodiversity 

Network Atlas 

Various, 

including 

soil biota 

Great Britain 

and Northern 

Ireland Variable 
2000-

present 

http://data.nhm.ac.

uk/dataset/the-

2016-release-of-

the-predicts-

database PREDICTS 

Various, 

including 

soil biota Global 
Predominantly 

species 2016 

https://catalogue.ce

h.ac.uk/documents/

fccd86b0-f5b6-

4716-b4f7-

f43ad82daeee 

Soil Invertebrates 

Countryside Survey 
Soil 

invertebrates Great Britain Class/Order 2007 
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Figure Legends 1052 

 1053 

Figure 1. Considering different soil habitats and corresponding sampling methods adds 1054 

dimensionality to macroecological approaches. 1055 

 1056 



 1057 

Figure 2. The challenges associated with the belowground system which contributed to a lack of soil 1058 

macroecological research, and potential approaches to address them. These challenges can be 1059 

separated into four sets of necessary considerations: data; spatio-temporal; biotic; and abiotic. 1060 

Challenges for each solution are highlighted in central darker boxes whilst example approaches to 1061 

address these challenges are shown in the surrounding, lighter boxes. J-SDMs = joint species 1062 

distribution models; AMF = arbuscular mycorrhizal fungi; PCNM = Principal Coordinates of 1063 

Neighbourhood Matrices.  1064 
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