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Abstract 

The finite supply of phosphate rock, as well as rising fertiliser prices, are key topics in the 

discussion around global food system resilience. Our paper contributes to this discussion by 

conducting an analysis of the dynamic causal relationships between phosphate rock, fertilisers, 

and wheat prices to provide insights on how farmers and policymakers might respond to 

phosphate rock supply shocks for sustainable and resilient food systems. The linkages between 

147 monthly price observations spanning from March 2007 to April 2019 were analysed by 

combining Directed Acyclic Graphs (DAG), a recently developed modelling technique, and a 

Vector Error Correction Model (VECM). The findings suggest that there are five long-run 

cointegrating relationships between these three key components of the food supply chain. Price 

shocks to the phosphate rock market, over a two-year period had a knock-on positive impact 

on phosphorus fertiliser prices and to a lesser extent on wheat prices. Interestingly, an increase 

in wheat price had a sizeable impact on both fertiliser and phosphate rock prices, providing 

empirical evidence that increases in the price of phosphate rock are driven by demand factors, 

as well as supply factors. 
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1. Introduction 

The global food system is facing unprecedented stresses and shocks such as the climate 

crisis, resource depletion, population growth as well as changes to dietary patterns and 

agricultural land-use practices (Fanzo, 2019; Meyfroidt et al., 2019; Oyetunde-Usman et al., 

2021; Steffen et al., 2015; Vermeulen et al., 2012; Wu et al., 2014). The continued and 

appropriate supply of essential plant nutrients required for crop growth underpins a viable food 

system but these nutrients must be used efficiently and sustainably (Dawson and Hilton, 2011; 

Stewart et al., 2005). Among many nutrients that plants require for growth, the element 

phosphorus is essential to crop performance. 

Modern agricultural production systems are highly reliant on phosphorus in the form 

of mineral fertiliser derived mainly from a finite resource – phosphate rock - and global 

deposits are strongly skewed towards a few countries that are located in what has been termed 

“geopolitically unstable zones” (e.g., approximately 45% of global phosphate rock deposit is 

located in Algeria, Iraq, Jordan and Syria), making sustainable access and consistent supply 

uncertain (Blackwell et al., 2019; Cordell and Neset, 2014). With steadily increasing global 

demand for phosphate fertiliser in response to factors such as population growth, dietary 

change, and development of agro-fuel production (Blackwell et al., 2019; FAO, 2008; 

Khabarov and Obersteiner, 2017; Von Horn and Sartorius, 2009), the finite nature of this 

resource may lead to future shortages of inorganic phosphate fertiliser (Blackwell et al., 2019; 

Cordell and Neset, 2014).  

A potential future scarcity of phosphate rock and growing demand for phosphate rock 

for fertiliser use has brought to fore two main discussion points. Firstly, scarcity might lead to 

rising prices of phosphate rock and fertilisers, which farmers, especially in developing 

countries, might not be able to afford, or invest in new resource alternatives, with implications 

for agri-food systems and global food security (Cordell et al., 2009; Khabarov and Obersteiner, 
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2017; Neset and Cordell, 2012; Van Kauwenbergh et al., 2013). Secondly, growing demand 

for phosphorus in farming might favour improper use of phosphorus fertiliser leading to 

increased inefficiency of use, wastage and losses to the aquatic environment (Elser and Bennett, 

2011; Withers et al., 2020). Phosphorus rock supplies may not keep up with future demand if 

fertilisers are used unsustainably. 

In an effort to address these concerns, the nature of the causal relationships between 

phosphate rock, fertilisers and agricultural commodity prices has received a lot of interest in 

recent times. However, due to the complexity of the interrelationships existing research studies 

have not offered a definitive direction. Some studies argue that the price of phosphate rock is 

driven by its scarcity leading to increase in phosphate rock price, with resulting impacts 

trickling down to the fertiliser and agricultural markets (Chowdhury et al., 2017; Cordell, 2010; 

Cordell et al., 2009; Vaccari et al., 2014; Von Horn and Sartorius, 2009) and described this as 

a dominantly “supply-driven” relationship. On the other hand, some explain that the reverse 

causal relationship is also important, with shocks in fertiliser and agricultural markets likely to 

have a knock-on impact on the phosphate rock market, leading to “demand-driven” price 

increases of phosphate rock (Cordell et al., 2009; Khabarov and Obersteiner, 2017; Mogollón 

et al., 2018). The argument being that increases in agricultural commodity prices tend to raise 

farmers’ return on fertiliser use, and hence increase the demand for fertilisers, and consequently 

phosphate rock prices. 

It therefore remains unclear whether the causal relationships between phosphate rock, 

fertilisers and agricultural commodity prices are supply or demand-driven (or both supply and 

demand-driven). Further evidence is required given the critical influence of the phosphate rock 

market on the global food system and food security (Chowdhury et al., 2017; Heckenmüller et 

al., 2014; Lyon et al., 2020), and an increasing policy focus on sustainable use of planetary 

resources and food system resilience (Cordell and White, 2014). A few empirical studies, for 
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example O’Hara et al. (2015), Gnutzmann and Spiewanowski (2016), and Brunelle et al. (2015)  

have studied the relationship between fertilisers and agricultural commodity prices, but have 

not included the main resource inputs to fertilisers, such as phosphate rock. 

 In this paper, we employ a time-series estimation approach to analyse the causal 

relationship between phosphate rock, fertilisers and wheat prices, by combining a Vector Error 

Correction Model (VECM) with Directed Acyclic Graphs (DAG) in a dynamic framework. 

The fertilisers under consideration include the two most common phosphate fertilisers such as 

Triple superphosphate (TriP) and Diammonium phosphate (DAP) as well as other non-

phosphate fertilisers used in agricultural production namely, urea and potassium chloride.  

Our paper makes important contributions to the literature and policy debate. Firstly, 

this study provides the first attempt to apply a combination of VECM and DAG approach, a 

recent and powerful modelling technique, to investigate the contemporaneous causality and 

dynamic interrelationships among phosphate rock, fertilisers and wheat prices. The applied 

DAG explores the inherent causal information contained in the data to test for 

contemporaneous causation among the markets (Pearl, 1995; Spirtes et al., 2000b). Secondly, 

our aim is to provide agricultural market participants and policy analysts with a clear picture 

of what drives increases in phosphate rock price as well as providing a comprehensive 

perspective of price interdependence and directions of causation between phosphate rock, 

fertilisers and wheat prices that are relevant to a viable and resilient agri-food system based on 

sustainable use of resources. 

2. Literature review 

Various time series techniques have been employed in applied economics studies to 

empirically examine the dynamic relationship between multiple variables (Bakhtavoryan et al., 

2014; Swanson and Granger, 1997). One of the most common approaches used is Vector 
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autoregression (VAR) which models endogenous variables as a function of their past values 

(Sims, 1980). The widespread acceptance of VAR is attributed to two main reasons. First, the 

VAR approach offers a simple way to characterise data without any requirement of invoking a 

priori assumptions based on economic theory to restrict the dynamic relationships between 

variables; that is, it can accommodate zero-restriction identification condition (Awokuse and 

Bessler, 2003; Bakhtavoryan et al., 2014; Cooley and Dwyer, 1998a; Xu, 2018). Second, VAR 

can be readily transformed to explain evolution of systems, and therefore, can represent the 

complex interactions in real world markets and how they function (Awokuse and Bessler, 2003; 

Cooley and Dwyer, 1998a).  

Previous studies that examined the interaction of agricultural commodity price 

developments with market fundamentals include, for example, a study by Rezitis (2015) that 

analysed the relationship between agricultural commodity prices, crude oil prices and exchange 

rate using VAR and Granger causality tests concluded that there exist bidirectional causality 

effects between international agricultural prices and crude oil prices. Tuan (2010) also 

employed a similar technique as Rezitis (2015) to analyse the relationship between 

international prices, import prices and domestic prices of phosphate fertilisers in Vietnam and 

found that the Vietnamese phosphate fertiliser prices are well integrated into world phosphate 

fertiliser prices. Similarly, studies such as Gnutzmann and Spiewanowski (2016) applied a 

VAR cointegration approach to examine the impact of changes in crude oil price on the causal 

relationship between fertiliser and food prices. They found that fertiliser prices have a 

significant impact on food prices much more than direct energy prices.  

Although past studies have widely adopted some variation of a VAR model, the value 

of the results in terms of applied policy analysis has been questioned (Awokuse and Bessler, 

2003; Cooley and Dwyer, 1998b; Swanson and Granger, 1997). This is attributed to the fact 
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that the impulse response functions (IRF) and forecast error variance decompositions (FEVD) 

generated from a VAR model cannot offer any meaningful structural interpretation mainly 

because their innovations are not identified with the underlying structural errors1. The residuals 

of the covariance matrix in a VAR model often turn out to be non-diagonal, suggesting 

contemporaneous correlation among the errors (Swanson and Granger, 1997)2. Therefore, 

analysis of the evolution of economic shocks of the system caused just by an innovation in one 

variable may not be appropriate, as this innovation may occur at the same time as another 

innovation in the system (Swanson and Granger, 1997).  

To overcome the no-restriction problem of VAR models, the covariance matrix of the 

residuals is orthogonalized by the application of the Choleski decomposition procedure. This 

decomposition procedure ensures the evolution of innovations in a unidirectional system by 

introducing a just-identified contemporaneous structure of innovations assumption (i.e. 

introducing a restriction that is sufficient to identify the underlying shocks) (Awokuse and 

Bessler, 2003). The application of this approach to estimate the dynamic relationship among 

agricultural commodity markets is growing (Akram, 2009; Awokuse and Bessler, 2003; Gou, 

2017; Vo et al., 2019; Wei, 2019). One shortcoming of this approach is that its imposition of a 

just-identified contemporaneous structure of innovations is rarely consistent with economic 

theory or with the inherent casual path rooted in the data (Awokuse and Bessler, 2003; 

Awokuse and Duke, 2006). Hence, policy inference based on such modelling approach strongly 

                                                 

 

1 The use of VAR models mostly centres around the computation of IRF and FEVD. Both IRF and FEVD track 

the changes in the system of equations that are caused by the evolution of economic shocks in the system. 
2 Errors, residuals, shocks and innovations are used interchangeably throughout the paper.  



8 

 

depends on the validity of the imposed just-identified structural form (Awokuse and Bessler, 

2003; Swanson and Granger, 1997).  

Sims (1986) argued that the application of ordering based on Choleski decomposition 

for analysing the causal relationship between economic variables that are correlated 

contemporaneously will yield significant differences for impulse response and corresponding 

FEVD. With this deficiency of the Choleski decomposition, Bernanke (1986) and Blanchard 

and Watson (1986) proposed orthogonalisation alternatives that allow the imposition of over-

identification restrictions. Such models are popularly labelled as Structural Vector 

Autoregressions (SVARs) because they rely on prior economic theory as the source of their 

identifying restrictions. Specifically, Bernanke (1986)’s approach achieves identification 

through the assumption that distinct, mutually orthogonal and behavioural innovations drive 

the model. Unlike in pure VAR, the just-identified structure assumption for the innovations is 

relaxed under the Bernanke decomposition approach; it requires imposition of a particular 

causal ordering of the variables.   

Given that theory may not necessarily produce a clear identifying structure for  

imposition of a particular causal ordering of the variables, an appropriate identification 

procedure can be achieved by modelling the contemporaneous innovations from VAR with the 

DAG, a recent method rooted in artificial intelligence and computer science, which is critical 

in offering sound inference in innovation accounting (Awokuse and Bessler, 2003; Awokuse 

and Duke, 2006; Spirtes et al., 2000a; Swanson and Granger, 1997). 
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For this study, we adopted the variation of the Bernanke decomposition approach that 

is based on a combination of a VECM and DAG modelling techniques3. This approach is data-

driven and has become increasingly popular in applied economics studies that examine 

dynamic relationships between economic price variables; see in particular the studies by Xu 

(2018), Bessler and Akleman (1998), Bessler et al. (2003), Awokuse and Duke (2006) and Yu 

et al. (2007). Recently, Xu (2018) employed the Bernanke decomposition to examine the 

dynamic relationship between US corn cash and futures prices. Although the use of the 

combination of a VECM and DAG approach has been popular in recent years, to the best of 

our knowledge, our study is the first to apply this approach in investigating the interrelationship 

between phosphate rock, fertilisers (such as Triple superphosphate, Diammonium phosphate, 

urea and potassium chloride fertilisers), crude oil and wheat prices in a multimarket and 

intertemporal framework.  

3. Methods of analysis 

To achieve the objectives of the study, we employed two main estimation techniques: 

a multivariate time-series technique to capture the dynamic interdependence between 

phosphate rock, oil, different fertilisers and wheat markets, and, a graphical modelling analysis, 

DAG, to explore whether or not there are contemporaneous relationships between these 

markets. 

                                                 

 

3 A VECM is a differenced VAR model, but also adds the error correction feature that accounts for both the short-run  and 

long-run dynamics. It is more appropriate for analysis that involves  variables that are nonstationary and cointegrated Engle, 

R.F., Granger, C.W., 1987. Co-integration and error correction: representation, estimation, and testing. Econometrica: journal 

of the Econometric Society, 251-276..  
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3.1 Multivariate Cointegration Analysis 

Several studies that have analysed a set of interrelated variables have employed a VAR 

model. The specification of a VAR model with k lags of J variables are written as:  

𝑋𝑡 =  ∑ Γ𝑖𝑋𝑡−𝑖

𝑘

𝑖=1

+  𝜇 +  𝜀𝑡     (for 𝑡 = 1, … . , 𝑇), 
  

(1) 

where X indicates (𝐽 × 1) vector of series at time t, Γ𝑖 is a (𝐽 × 𝐽) matrix of coefficients relating 

series changes at lagged i period to current changes in series, 𝜇 is a (𝐽 × 1)  vector of constants, 

and 𝜀𝑡 is a (𝐽 × 1) vector of independent identically-distributed (i.i.d.) innovations ( known as 

error terms in many statistical models that are not based on time series). Equation (1) indicates 

that each of the J variables is a function of n lags of all J variables, including itself, a constant 

and a present innovation (error) term. According to Engle and Granger (1987), the procedure 

for testing interrelationships between a set of variables should not be based on VAR if some 

series in the set of evaluated variables are nonstationary and cointegrated. An attempt to employ 

VAR will yield misspecification error (Engle and Granger 1987). Rather it is more appropriate 

to adopt the VECM, developed by Johansen (Johansen, 1988, 1991; Johansen and Juselius, 

1990). This is suitable to study both short-run discrepancies and long-run equilibrium for data 

series that are cointegrated. The VECM framework is specified as follows:  

∆𝑋𝑡 =  𝜇 +  𝜶𝐸𝐶𝑇𝑡−1  + ∑ 𝜏𝑖∆𝑋𝑡−𝑖

𝑘−1

𝑖=1

+  𝜀𝑡 𝑓𝑜𝑟 𝑡 = 1, … . , 𝑇,   
  

(2) 

 Equation (2) is a first-differenced VAR model with an inclusion of a lagged-level term. 

The 𝐸𝐶𝑇𝑡−1 , lagged-level component, represents the Error Correction Term and the 𝜶 

represents a (J × J) coefficient matrix containing information of how lagged levels of prices 

respond to current changes which suggests that the coefficient matrix 𝜶 determines how many 



11 

 

combinations of 𝑋𝑡 that are stationary (Bessler and Akleman, 1998; Bessler and Lee, 2002; 

Bessler et al., 2003). 

The parameters in Equation (2) identify the short-run, contemporary, and long-run 

information among the price series. Specifically, the parameter, 𝜶, contains summary of 

information on the long-run association that exists between the J variables. In the case when 

the rank of 𝜶 is a non-negative number, p, and it is less than the number of variables, J, then 𝛼 =

∅𝛽,, where ∅ and β are (J × p) matrices. The β matrix contains the cointegrating parameters 

and the matrix ∅ includes the information on the speed of adjustment. Conducting hypothesis 

testing on β can identify long-term structure while hypothesis testing on ∅ and 𝜏𝑖 can determine 

the short-run relationships (Johansen, 1988, 1991; Johansen and Juselius, 1990). Moreover, the 

structural analysis of the parameter 𝜀𝑡 can identify the contemporaneous structure, as detailed 

in Demiralp and Hoover (2003) and Bessler and Lee (2002).  

It is widely acknowledged that meaningful interpretations of individual coefficients in 

Equation (2) – VECM are difficult (Sims, 1980). Consequently, innovation accounting may be 

most appropriate to describe dynamic interrelationships among price series (Lütkepohl and 

Reimers, 1992; Swanson and Granger, 1997). The innovation accounting technique involves 

application of the Johansen (1992)’s maximum likelihood procedure to estimate the parameters 

of Equation (1). The estimated VECM is transformed to a levels VAR and then inverted to a 

moving-average representation. The innovation accounting based on the moving-average 

representation is then computed to summarise the dynamic interdependencies among the prices 

series in the contemporaneous time.  

The ‘information on the contemporaneous structure of interdependence may be 

explored by examining the causal relationship among innovations in contemporaneous time t, 

across markets based on the variance-covariance matrix of innovations (residuals) from the 
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VECM’ (Hoover, 2005; Spirtes et al., 2000b). The application of DAG provides data-driven 

evidence on ordering or ‘structuring’ in contemporaneous period t, based on the assumption 

that the information on the parameter 𝜀𝑡 is causally satisfactory. Finally, a Bernanke ordering 

may be applied with the discovered order/structure obtained from the DAG (Bernanke, 1986). 

3.2 Directed Acylic Graphs and Algorithms of Inductive Causation 

The application of DAG was first introduced in artificial intelligence and computer 

science fields (Pearl, 2000), however its use in applied economics literature is growing. A DAG 

is a pictorial representation showing causal flow among a set of variables that are suggested to 

be related in theory or past studies (Yu et al., 2007). The causal flow is such that there is no 

directed cycles, that is, it is impossible to start at a node (or vertex) and follow a directed path 

back to the same node (Awokuse and Bessler, 2003; Awokuse and Duke, 2006). The nodes of 

DAG denote variables upon which data has been collected, and the line segments connecting 

nodes (popularly referred to as direct edges or arrows) are produced by estimating conditional 

statistical dependence or independence among the pairs of variables.  

For illustration purpose, let us consider that the economic variables X, Y, and Z are in 

causal relations. The first scenario illustrates a causal fork, which assumes a relationship such 

that Z causes X and Y, depicted as: X←Z→Y. The existence of a common cause in Z means 

that the unconditional association between X and Y is non-zero, however the conditional 

association between X and Y, given the knowledge of the common cause Z, is zero. This implies 

that common causes screen off correlations between their joint effects. On the other hand, the 

second case illustrates the inverted causal fork, which assumes a relationship such that Y and 

Z cause X, depicted as: Y→X←Z. This suggests that the unconditional correlation between Y 

and Z is zero, while the conditional correlation between Y and Z given the common effect X is 

non-zero. In this case, common effects do not screen off association between their joint causes.  
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In line with Bessler and Lee (2002), DAG can be used for representing conditional 

independence as given by the recursive product decomposition formular:  

𝑃𝑟(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑚) =  ∏ 𝑃𝑟(𝑥𝑖| 𝑝𝑎𝑖)

𝑚

𝑖=1

 
(3) 

where Pr denotes the probability of variables 𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑚; 𝑝𝑎𝑖 represents the realisation 

of some subset of variables that precede ( come before in a causal sense) 𝑥𝑖 in order  (i = 1, 2, 

. . . , m); the notation ∏  denotes the product operator. Pearl (1986) proposed the concept of 

directional separation (d-separation) described as a “graphical characterisation of conditional 

independence” [see Verma and Pearl (1988) for proof of this proposition]. Pearl (1986) and 

(Pearl, 1995) revealed that the conditional independence relations implied by Equation (3) can 

be illustrated by the d-separation. In particular, the significance of d-separation is in the fact 

it shows the direction of flow between the causal graphs as well as the probability distribution 

of the data generating process (Pearl, 2000). 

Several variants of search algorithms have been developed to implement the concept of 

d-separation particularly on observational dataset. Notable among algorithms developed is the 

PC algorithm by Spirtes et al. (2000b) for constructing DAG from observational data. The PC 

algorithm is an ordered set of commands that informs the direction of causal direction among 

variables based on a stepwise testing of conditional independence to remove statistically 

insignificant edges or causal links between variables and directing causal flow between 

variables. Specifically, it involves sequential removal of edges among a set of N variables (for 

example, innovations from VAR) based on zero correlation or partial correlation. The basic PC 

algorithm as well as its refined extension are available and can be estimated in TETRAD IV 

software (see http://www.phil.cmu.edu/projects/tetrad/). 

http://www.phil.cmu.edu/projects/tetrad/
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To test whether the computed sample correlations conditional correlations are 

significantly different from zero, the Fisher’s 𝑧 statistics was deployed. This can be presented 

as follows 

(𝜌(𝑖, 𝑗| 𝑘), 𝑛) =  [0.5 √𝑛 − |𝑘| − 3 ]  𝑙𝑛 {
1 +  𝜌(𝑖, 𝑗|𝑘|) 

1 −   𝜌(𝑖, 𝑗|𝑘|)
} 

(4) 

where 𝑛 denotes the number of observations employed in the computation of the correlations; 

𝜌(𝑖, 𝑗|𝑘|) represents the population correlation between series 𝑖  and 𝑗 which is conditional on 

series 𝑘 (eliminating the effect of series 𝑘 on each 𝑖  and 𝑗); and |k| represents the number of 

observations in 𝑘 ( that we condition on) .  If 𝑖, 𝑗 and 𝑘 are normally distributed and r(𝑖, 𝑗| 𝑘) is 

the sample conditional correlation of 𝑖  and 𝑗 given 𝑘, then the distribution of z(𝜌(𝑖, 𝑗|𝑘|𝑛) −

 z(𝑟(𝑖, 𝑗|𝑘|𝑛) is standard normal. The application of DAG was first applied by Swanson and 

Granger (1997) to inform or provide casual flow on residuals from VAR. As in Swanson and 

Granger (1997), the casual flow/results suggested by DAG is employed for estimating the 

forecast error variance decompositions and impulse response functions. For additional details 

on DAG and its applications, see the studies conducted by Spirtes et al. (2000b) and Spirtes et 

al. (2000b). 

4. Data 

The data employed for analysis consists of monthly price data for the period from 

March 1999 to April 2019 for world prices of oil, phosphate rock (PhoRock), Triple 

superphosphate (TriP), Diammonium phosphate (DAP), urea, potassium chloride (Potass) and 

wheat. This data was obtained from the C.I.A. World Fact Book. All the price series are 

measured in US$ per metric tonne except oil price measured in US$ per barrel.  The data set 

covers 240 observations, and all data series are converted into natural logarithmic form to 

reduce the variations without altering the overall characteristics and structure of the data. The 
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description and summary statistics of the seven commodities and their prices are presented in 

Table A1 of the appendix and Table 1, respectively. Diammonium phosphate (DAP) have a 

higher mean than the Triple superphosphate (Trip) fertilisers. Notably, all the price series found 

their maximum values in 2008 (see Figure 1a in the appendex section), which indicates the 

global commodity price hikes. As one might expect, most of the price series are positively 

skewed, except for oil price series, and platykurtic. 

Table 1. aSummary statistics of commodity price series 

Series Mean Median Minimum Maximum Standard 

deviation 

Skewness Kurtosis 

Oil 4.329 4.335 3.428 4.897 0.346 -0.321 -0.949 

PhoRock 4.856 4.797 3.818 6.064 0.423 0.826 0.965 

TriP 5.954 5.938 5.394 7.031 0.331 1.271 2.169 

DAP 6.115 6.074 5.627 7.091 0.319 1.108 1.498 

Urea 5.698 5.666 4.960 6.646 0.302 0.604 0.613 

Potass 5.803 5.709 5.175 6.771 0.385 0.503 -0.399 

Wheat 5.489 5.469 4.955 6.086 0.265 0.006 -1.055 

aValues of price series are log transformed prices. 

5. Results and Discussion 

5.1 Unit roots tests 

In time series data analysis, it is important to ascertain whether data series are stationary 

at their levels, or after the data series has been first differenced. If two or more series are found 

to be stationary after first differencing, then it may be necessary to test for cointegration as 

there may be long-term relationships among the series. To examine the non-stationarity of the 

seven price series, we employed two univariate unit root tests: the augmented Dickey-Fuller 

(ADF) tests (Dickey and Fuller, 1981) and the Phillips–Perron (PP) test (Phillips and Perron, 

1988). However, these two tests are low power tests (Awokuse and Duke, 2006; Fedorová, 
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2016), and therefore we also applied the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 

(Kwiatkowski et al., 1992). The two former tests were used to test for the null hypothesis of a 

unit root while the latter was used to test the null hypothesis of stationarity. The combination 

of these three tests presents a more robust approach to determining the presence of unit root. 

In Table 2, we report the results of these three tests for both price levels and their first 

differences. The results show that the price series are stationary in differences but not in levels, 

suggesting the possibility of cointegrating relationships among the variables and the 

appropriateness of carrying out a multivariate cointegration analysis (Hansen and Juselius, 

1995). 
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Table 2.  Unit root tests on levels and first differences of monthly prices of variables 

Series Without trend  With trend 

ADFa PPb KPSSc   ADFa PPb KPSSc  

Panel A: Test with price levels 

Oil -2.386 -2.139 1.439  -2.628 -1.329 0.178 

PhoRock -2.057 -1.046 1.392  -1.014 -2.110 0.392 

TriP -2.006 -0.980 1.268  -1.006 -1.180 0.368 

DAP -1.071 -1.166  0.896  -2.031 -1.866  0.596 

Urea -2.077 -0.425 1.616  -2.027 -2.145 0.616 

Potass -1.741 -0.618 2.611  -1.041 -1.113 0.681 

Wheat -2.126 -0.926 2.523  -0.017 -0.926 0.569 

Panel B: Test with first differences 

Oil -7.862 -5.239 0.073  -1.024 -0.429 0.060 

PhoRock -6.257 -8.146 0.092  -1.057 -1.046 0.392 

TriP -4.347 -5.680 0.061  -1.006 -0.980 0.368 

DAP -5.842 -7.066  0.096  -0.071 -1.166  0.596 

Urea -3.502 -4.115 0.016  -0.077 -0.425 0.616 

Potass -10.598 -6.218 0.281  0.041 -0.618 0.105 

Wheat -9.017 -4.116 0.103  -0.017 -0.926 0.569 

a The choice of the number of lags is based on the Schwarz information criterion (SIC). We obtain similar outcome on the 

confirmation of unit root when other criteria such as the Akaike information criterion (AIC) and the Bayesian information 

criterion (BIC). The critical values of the ADF test with a constant but without a trend at the 1%, 5% and 10% significance 

levels are −3.43, −2.86 and −2.57, respectively, while the critical values of the ADF test with a constant and a trend at the 1%, 

5% and 10% significance levels are −3.96, −3.41 and −3.12, respectively. 

b The critical values of the PP test with a constant but without a trend at the 1%, 5% and 10% significance levels are −3.43, 

−2.86 and −2.57, respectively, while the critical values of the PP test with a constant and a trend at the 1%, 5% and 10% 

significance levels are −3.97, −3.42 and −3.13, respectively. 

c The critical values of the KPSS test with a constant but without a trend at the 1%, 5% and 10% significance levels are 0.74, 

0.46 and 0.35, respectively, while the critical values of the KPSS test with a constant and a trend at the 1%, 5% and 10% 

significance levels are −3.43, −2.86 and −2.57, respectively. 

 

5.2 Cointegration test 

Following the results from the unit root tests, we conducted cointegration analysis to 

ascertain the number of cointegrating relationship that exits among the seven price variables 

(Johansen, 1992). Table 3 presents the results of the Johansen’s trace and maximum eigenvalue 
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tests for the co-integration rank of price series. Before the procedure for both tests could be 

conducted, it is important to determine the optimal lag length, denoted as k in Equation (1). 

The optimal lag length adopted is k=2. This was based on Schwarz information criterion. The 

test results as presented in Table 3 show that there are five long-term cointegrating relationships 

among the price series at the 5% significance level. 

Table 3. Johansen’s trace and maximum eigenvalue tests for the co-integration rank of price 

series 

Rank Panel A: Trace test  Panel B: Maximum Eigenvalue test 

Statistics Critical values at 

5%a 

 Statistics Critical values at 5% a 

0 82.07    44.91     60.85    56.91    

1 62.41    39.43     49.74    42.43    

2 48.70    33.32     45.21    31.32    

3 38.95    27.14     30.15 28.14    

4 25.83    21.07     22.31    19.07    

5* 11.17    14.90     9.58    15.02    

6* 2.59      8.18     7.48      8.18    
a The critical values estimated are from MacKinnon et al. (1999). 

5.3 Contemporaneous causality and dynamic relationship among price series 

Following the application of the PC algorithm DAG to the variance-covariance matrix 

of the residuals from the VECM presented in Equation (2), we report in Figure 1 the 

contemporaneous causal relationship among the seven price series. The DAG produced are 

based on 5% and 30% significance levels, however, the DAG with the latter level of 

significance appeared to produce a more reasonable causal graph. The graph based on the 5% 

significance level suggests that the data on the price series are not sufficiently rich to yield a 

clear causal graph in the contemporaneous period. Studies conducted by Awokuse and Bessler 

(2003) and Awokuse and Duke (2006) established that DAG with less restrictive levels of 

significance enhances retention of edges or relationships between price series. Besides, Spirtes 
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et al. (2000b) suggest that less restrictive significance levels may lead to improvement 

performance of casual structure particulary in small samples. As a result, we based the 

inferences on the 30% DAG so as not to be overly restrictive in terms of identifying possible 

instantaneous relationships among the price series. 

Figure 1 shows that the seven markets considered (Oil, PhoRock, TriP, DAP, Urea 

Potass and Wheat) are interconnected in contemporaneous time (i.e. within a month4), 

suggesting that each of the price series will respond to shocks in other markets. Specifically, 

the DAG algorithm shows that there is no directed edge towards phosphate rock price, 

indicating that phosphate rock price is exogenous. Moreover, the phosphate rock price causes 

changes in wheat, DAP and oil prices, suggesting that shocks in the phosphate rock market in 

the short-term may have an impact on prices of wheat and DAP fertiliser. This supports the 

findings by Khabarov and Obersteiner (2017) and Cordell et al. (2009) that price spikes in the 

global fertiliser markets, as well as the rapid growth in dairy and cereal prices in 2007, may be 

partly attributed to price changes in the phosphate rock market in the same year.   

The analysis also shows that the DAP fertiliser price is affected by phosphate rock and 

other fertiliser prices (including TRIP, POTASS, UREA). This is not surprising given that DAP 

is the world's most widely used phosphorus fertiliser ( that also contains some N) and shocks 

in its prices may likely have widespread effects. The DAP fertiliser price is affected by oil 

prices which may be attributed to increased transportation costs and/or the costs of fertiliser 

production, which requires sulphuric acid as well as ammonia. In particular, ammonia 

production uses large quantities of natural gas, and subsequently its price is strongly influenced 

                                                 

 

4 Further knock-on impacts may occur on other markets beyond this timeframe.  The full interconnected impacts 

between all markets are captured using the IRFs.  
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by any shocks in energy costs (Chowdhury et al., 2017; Von Horn and Sartorius, 2009). The 

wheat price is affected by phosphate rock, oil and Potass fertiliser prices, which supports the 

argument that the oil price plays a significant role in explaining shocks in the prices and 

associated volatility of agricultural commodities (Nazlioglu et al., 2013; Vo et al., 2019). The 

price of urea is found to be affected by oil, Trip and Potass prices.  

Figure 1. Causal Flows on Innovations from vector error correction model on Price Series 

based on PC algorithms at significance level 0.05 (left) and 0.30 (right) within one month. 

Based on the results obtained from the VECM model in Equation (2) combined with 

the causal relationship in Figure 1 (based on 30% significance level DAG), we generated two 

moving average (MA) presentations for each of the price series at alternative time horizons, 

which include the FEVD and IRF. These MA presentations are then used to examine the 

dynamic interdependence among the price series. Table 4 presents the FEVD for successive 

time horizons which explains the percentage variation of a price series that is due to innovations 

by itself and the other six price series. These numbers partition the variation in each class at 

horizons of one, six, twelve, eighteen and twenty-four months ahead so as to identify how the 

impact varies over time.  The 24 month time period provides sufficient time to ensure the full 

effects are captured.  
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Consistent with the results from the DAG analysis, the phosphate rock price is wholly 

explained by innovations to its own price and is not driven by any other markets at least 

initially, implying that price shocks in the phosphate rock market are largely exogenous and 

supply-driven at least in the immediate short-run (Blackwell et al., 2019; Von Horn and 

Sartorius, 2009). This result suggests that potential restrictions to phosphate rock mining 

attributable to geopolitical instability in the mining regions of the world could disrupt 

phosphate rock global supply leading to a shortage in phosphate rock, with a knock-on impact 

on the phosphate rock price (Blackwell et al., 2019; De Ridder et al., 2012; Von Horn and 

Sartorius, 2009). After 6 months, the variation in the phosphate rock price is still primarily 

influenced by its own price (72.12%), followed by two main phosphorus mineral fertilisers, 

TRIP price (13.84%) and DAP price (8.66%). However, the influence of other markets 

gradually emerges after twelve months, with 3.33% of the variation in the phosphorus rock 

price attributable to the wheat price. After two years, the phosphorus rock price is still 

influenced by its own price (53.43%), but the demand market for phosphate rock which 

includes wheat, TRIP, and DAP prices accounted for 34.82%. This suggests the demand market 

for fertiliser and wheat production becomes increasingly important in explaining phosphate 

rock price over time, and that shocks in the global phosphate rock market are demand-driven, 

as well as supply-driven (Von Horn and Sartorius, 2009). The large contribution of TRIP and 

DAP fertilisers in explaining variability in the phosphate rock price after the first month is in 

line with changes in demand for mineral phosphorus fertiliser for agricultural production, 

thereby constituting pressure on phosphate reserves and consequently phosphate rock price 

(Chowdhury et al., 2017).  

 Simailr to the DAG analysis, the TRIP price is initially 100% exogenous thereafter the 

TRIP market starts interacting with other prices. After 12 months, variation in TRIP price is 

influenced by its own price (55.49%), wheat price (10.17%), phosphate price (2.74%), Urea 
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price (11.27%), DAP price (5.91%) and Oil price (1.10%). After 18 months, uncertainty in 

TRIP price is attributed to itself, wheat, urea and oil prices. Hence the TRIP fertiliser price 

appears to be influenced more heavily by the demand for fertiliser in the wheat industry than 

by the supply of phosphate rock. Given that farmers operate on small margins, increases in 

agricultural commodity prices tend to raise farmers’ return on investment in fertiliser use and 

thus fertiliser demand, and consequently fertiliser prices. For example, Khabarov and 

Obersteiner (2017) found that a massive import of fertilisers to India to meet increasing crop 

demand contributed significantly to the global price spike in phosphorus fertiliser in 2007.  

 Consistent with the direction of causality obtained in the DAG analysis, the variation 

of the wheat price was largely associated with the wheat price itself (94.07%) and modestly 

attributed to phosphate rock price (2.35%), crude oil price (3.361%) and potass fertiliser price 

(0.21%). After 24 months, variation in wheat price was found to still be influenced by its own 

price (93%). Variation in the DAP price series is initially largely influenced by its own price 

(65.81%), TRIP fertiliser (28.74%) and phosphate rock price (4.48%). However, after twelve 

months, the DAP fertiliser price is largely driven by TRIP price (37.49%), oil price (20.27%), 

wheat price (12.86%) and prices of other fertilisers (Potass - 4.80%, Urea - 7.69). This pattern 

was maintained throughout the 2-year time horizon and suggests that the DAP price is 

susceptible to large volatility shocks not only from itself but also from other markets. These 

include the increased price of oil and energy necessary for the production and transportation of 

DAP, excessive fertiliser demand for biofuel production, and increased excise on phosphate 

fertiliser exports (FAO, 2008, 2011; Scholz et al., 2014).  

The results from the impulse response function (IRF) are presented in Figures 2(a) – 

(g) and indicate that shocks to the phosphorus rock market have a knock-on positive impact on 

phosphate fertiliser markets and to a lesser extent the wheat market.  A 10% increase in the 
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phosphate rock price results in a 2% increase in the TRIP price and a 0.8% increase in the 

wheat price. The IRF for the TRIP price indicates that a 10% increase in the TRIP price results 

in a 4% increase in the Urea price. The IRF for the wheat price shows that a shock to the wheat 

price has sizeable positive impacts on phosphate rock and fertiliser prices. A 10% shock in the 

wheat price has impacts ranging from 2.5% to 5% on fertiliser prices, and 4% on the phosphate 

rock price. This finding provides support for the policy paper by Khabarov and Obersteiner 

(2017) which argued that the phosphate rock price increases in 2008 could largely be attributed 

to demand shocks and phosphate scarcity. The findings from the IRF are consistent with the 

FEVD results.  
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Table 4. Forecast error variance decompositions results based on the DAG derived from PC 

algorithms  

Horizon 

(montha) 

PhoRock TriP Potass Oil Wheat DAP Urea 

PhosRockb 
       

1 100.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 72.122 13.844 0.195 0.631 1.091 8.661 3.456 

12 58.048 18.504 0.485 2.677 3.326 10.437 6.522 

18 54.730 19.561 0.570 3.459 4.055 10.477 7.147 

24 53.434 19.990 0.604 3.768 4.341 10.484 7.379 

TriPb 
       

1 0.000 100.000 0.000 0.000 0.000 0.000 0.000 

6 3.402 61.291 0.809 9.078 7.347 7.348 10.725 

12 2.743 55.493 1.098 13.310 10.168 5.914 11.274 

18 2.492 54.534 1.160 14.510 10.842 5.343 11.119 

24 2.384 54.168 1.185 15.010 11.116 5.095 11.043 

Potassb 
       

1 0.000 0.000 100.000 0.000 0.000 0.000 0.000 

6 3.250 1.862 63.929 0.328 2.600 17.854 10.177 

12 6.133 1.871 39.682 0.470 5.018 27.289 19.536 

18 6.497 2.245 34.123 0.859 6.285 28.213 21.778 

24 6.613 2.356 32.090 1.014 6.786 28.528 22.613 

Oilb 
       

1 0.000 0.000 0.000 100.000 0.000 0.000 0.000 

6 0.070 0.370 0.062 97.254 1.748 0.101 0.396 

12 0.320 0.196 0.059 96.801 1.848 0.581 0.194 

18 0.438 0.128 0.049 96.718 1.713 0.821 0.132 

24 0.491 0.095 0.044 96.696 1.645 0.928 0.101 

Wheatb 
       

1 2.355 0.000 0.206 3.361 94.078 0.000 0.000 

6 0.648 0.045 0.249 2.382 95.046 1.128 0.502 

12 0.669 0.185 0.203 2.480 93.766 1.707 0.990 

18 0.670 0.241 0.183 2.587 93.296 1.865 1.158 

24 0.668 0.264 0.174 2.636 93.091 1.935 1.232 

DAPb 
       

1 4.481 28.736 0.168 0.420 0.000 65.802 0.393 

6 4.497 38.432 4.169 13.853 9.132 21.107 8.810 

12 2.999 37.497 4.808 20.274 12.178 14.549 7.695 

18 2.529 37.558 5.086 22.239 12.866 12.708 7.014 

24 2.302 37.633 5.228 23.166 13.180 11.816 6.674 

Ureab 
       

1 0.000 7.657 2.515 2.500 0.000 0.000 87.328 

6 0.071 9.009 0.259 14.917 2.429 0.206 73.109 

12 0.213 8.234 0.135 17.584 2.919 0.530 70.386 

18 0.277 7.879 0.102 18.301 2.973 0.682 69.787 

24 0.306 7.708 0.085 18.642 2.997 0.752 69.509 

a Month one is the contemporaneous period.  b This subsection in the table shows how the variance of a particular series is 

explained by price innovations from the seven series listed in the first row. The numerical results are in percentage 

representations. 
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Figure 2. Impulse Response Functions of Each Prices to a one-time Only Shock in innovations in another price 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

  

 

 2(a) Impulse response over 24 months from Phosphorus Rock Shock                               2(b) Impulse response over 24 months from TRIP shock     
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         2(c) Impulse response over 24 months from POTASS shock                                   2(d) Impulse response over 24 months from OIL shock
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2(e) Impulse response over 24 months from WHEAT shock                                                2(f) Impulse response over 24 months from DAP shock 
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                                    2(g) Impulse response over 24 months from UREA shock 

6. Conclusion 

The finite supply of phosphate rock as well as rising fertiliser prices are key topics in 

the discussion around global food system resilience. The inter-relationships between phosphate 

rock, phosphate fertilisers and agricultural commodity prices are critical to understanding how 

farmers and policymakers might respond to future phosphate rock supply shocks and increase 

phosphorus-use efficiency for sustainable global food systems. This study applied a 

combination of a VECM and DAG analysis to examine the dynamic interdependence between 

phosphate rock, fertilisers and wheat prices. Applying DAG to the well-established VECM 

allows us to address issues surrounding dynamic patterns of price series using both forecast 

error decompositions and impulse responses. 
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Our results indicate five complex cointegrating relationships among phosphate rock, 

fertiliser and wheat markets. The DAG analysis indicates that the price of phosphate rock 

affects wheat and DAP prices, but that the phosphate rock price is not initially driven by any 

other markets, and is therefore most vulnerable to its own phosphate supply constraints. 

However, in the longer-run a shock to the wheat price will have sizeable knock-on impacts on 

phosphate rock and fertiliser prices.  This suggests that hikes in phosphate rock prices are 

driven by demand factors as well as supply factors.  Given the finite supply of phosphate rock, 

the continued demand for fertilisers for crop production may lead to an increase in phosphate 

rock prices.  

Moreover, the finding that higher phosphate rock prices are likely to lead to a new 

equilibrium in the agricultural sector, with higher output and input prices, suggests that future 

phosphate rock price shocks will be partially offset in the long-run by higher output prices. The 

extent to which producers are likely to adjust phosphorus use in response to future input/output 

price changes depends on the behavioural response of farmers5. As a result, policymakers 

cannot necessarily rely on higher phosphate prices to solve the problem of excessive 

phosphorus use in the event of phosphate rock scarcity in the future.  Policy initiatives should 

be directed to ensuring increased use efficiency of phosphorus fertilisers, for example, through 

improved nutrient management planning. This would help to preserve the finite phosphate rock 

resource, while also dampen increased demand, including excess demand in response to short 

term high commodity prices. Also, the policy advice on increased use efficiency of phosphorus 

fertilisers would help address supply side price hikes, especially when commodity prices are 

                                                 

 

5 While farmers responded to sharp increases in phosphate rock prices byreducing phosphorus use in 2008, it is 

unclear whether producers may respond in the same manner to further phosphate price increases.  



30 

 

unchanged, and therefore minimise impacts on farmers’ production decisions that ultimately 

impairs food supplies to semi-subsistence farmers and stresses poorer consumers in developing 

and medium income countries.  

While the present study focused on the relationship between phosphate rock, fertilisers 

and wheat prices, it is important to highlight that caution should be shown in generalising our 

findings to other agricultural commodities because they might respond at least slightly 

differently to market shocks. Considering this limitation, future research may be required to 

ascertain how other commodities may respond to shocks in phosphate rock price and vice versa. 
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APPENDIX 

Table A1. Description of commodity price series 

Commodity Unit Description of price series Chemical formula 

of fertilisers 

Oil US$ per 

barrel 

UK Brent 38° API NA* 

Phosphate 

rock(PhosRock) 

US$ per 

metric tonne 

Casablanca (Morocco), 

contract, f.a.s., 70% BPL 

NA* 

Triple superphosphate 

(TriP) 

US$ per 

metric tonne 

pre Oct 2006, US Gulf, f.o.b.; 

post Tunisian origin, spot, 

f.o.b., bulk granular 

Ca(H2PO4)2 .H2O, 

45% P2O5 

Diammonium 

phosphate (DAP) 

US$ per 

metric tonne 

US Gulf, spot, f.o.b., bulk (NH4)2HPO4, 

18% N, 46% P2O5 

Urea US$ per 

metric tonne 

Black sea, spot, f.o.b., bulk CH4N2O, 

46% N 

Potassium chloride 

(Potass) 

US$ per 

metric tonne 

Vancouver, spot, f.o.b., 

standard grade 

KCl, 

63% K2O 

Wheat US$ per 

metric tonne 

Export price delivered at the 

US Gulf port, no.1, hard red 

winter, ordinary protein 

NA 

Note: NA means not applicable 
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Figure 1A. Trends of price variables 
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