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Abstract 11 

This study demonstrates that independent additive effects of two human 12 

pharmaceuticals, the antibiotic trimethoprim and the artificial estrogen 17a-13 

Ethinylestradiol (EE2), inhibit plant litter decomposition by aquatic microorganisms. 14 

The constant release of pharmaceuticals, such as these, has the potential to affect 15 

aquatic microbial metabolism and alter biogeochemical cycling of carbon and 16 

nutrients. Here we advance the Tea Bag Index (TBI) for decomposition by using it in 17 

a series of contaminant exposure experiments testing how interactions between 18 

trimethoprim and EE2 affect aquatic microbial activity. The TBI is a citizen science 19 

tool used to test microbial activity by measuring the differential degradation of green 20 

and rooibos tea as proxies for respectively labile and recalcitrant litter 21 

decomposition. Exposure to either trimethoprim or EE2 decreased decomposition of 22 

green tea, suggesting additive effects upon microbial activity. Exposure to EE2 alone 23 

decreased rooibos tea decomposition. Consequently, trimethoprim and EE2 24 

stabilized labile organic matter against microbial degradation and restricted 25 

decomposition. We propose that the method outlined could provide a powerful tool 26 

for testing the impacts of multiple interacting pollutants upon microbial activity, at a 27 

range of scales, across aquatic systems and over ecologically relevant time scales.  28 
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1. Introduction 29 

Globally, human pharmaceutical use has increased by 3 % per annum since the year 30 

2000, leading to constant discharge of these compounds into the aquatic 31 

environment from both point (Waste Water Treatment Works and Septic Tanks) and 32 

diffuse sources (e.g. agricultural run-off) (Gros et al, 2007; Rosi-Marshall & Royer, 33 

2012; Van Boeckel et al, 2014;). Despite being present in the environment at low 34 

concentrations, pharmaceuticals have the potential to affect aquatic ecosystem 35 

processes because they are designed to be effective at micromolar or nanomolar 36 

concentrations (Rosi-Marshall & Royer, 2012; van Broeckel et al., 2014; Álvarez-37 

Muñoz et al. 2015). The specific effects of pharmaceuticals in the environment are 38 

likely to be complex as a consequence of the myriad of potential interactions 39 

between these compounds, and their potential effects upon aquatic plants, animals 40 

and microorganisms (Hernando et al, 2006; Rosi-Marshall & Royer, 2012; Brodin et 41 

al, 2014). For example, the presence of antimicrobial compounds has the potential to 42 

affect the microbial processes that control aquatic carbon and nitrogen cycling (Rosi-43 

Marshall & Royer, 2012; Brodin et al, 2014; Rosi et al., 2018), whilst other 44 

compounds such as artificial estrogens may actually stimulate microbial activity 45 

(Ribeiro et al., 2010; Pieper and Rotard, 2011; McClean and Hunter, 2020). As such, 46 

we need to understand how the interactions between pharmaceuticals influence 47 

microorganism-mediated biogeochemical processes, to safeguard ecosystem 48 

services. 49 

Antibiotics and artificial estrogens represent some of the most widely detected 50 

pharmaceuticals in the environment (Rosi-Marshall & Royer, 2012; Álvarez-Muñoz et 51 

al, 2015; Archer et al, 2017; Gaston et al., 2019). Within aquatic systems, a wide 52 

range of human antibiotics such as tetracyclines, sulphonimides and trimethoprim 53 

are detectable in the water column, sediments and biota (Metcalfe et al., 2003; 54 

Ashton et al., 2004; Thomas and Hilton, 2004, Wiegel et al., 2004; Ebele et al., 2017; 55 

Kotke et al., 2019). Trimethoprim is of particular environmental concern, due to its 56 

widespread usage in human and veterinary healthcare, where it is mainly used to 57 

treat bladder and urinary tract infections, gastro-intestinal problems, ear infections 58 

and as prohylaxis against opportunistic infections (World Health Organisation, 2019). 59 

Approximately 50 – 60 % of any administered trimethoprim dose is excreted in a 60 
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subject’s urine, combined with its widespread use this provides a definite route into 61 

the environment via municipal wastewater and leaching of agricultural effluents. As 62 

such, alongside its categorization as an essential medicine (World Health 63 

Organisation, 2019), trimethoprim is recognized as a potential environmental hazard 64 

(Straub, 2013; Tell et al., 2019).  65 

The presence of antibiotics and their residues, both in the water column and aquatic 66 

sediments may, directly affect the structure (Wieser et al 2016; Yuan et al 2017) and 67 

functioning of aquatic microbial communities. In inland waters, leaf litter and other 68 

terrigenous phytodetritus represent an important energy and nutrient source within 69 

the food-web (e.g. Vannote et al, 1980; Raymond & Bauer, 2001; Raymond et al., 70 

2016). Microbial decomposition is an essential process, which supports the transfer 71 

of litter-derived energy and nutrients to organisms at higher trophic levels. 72 

Consequently, antimicrobials are likely to directly affect the processes that heavily 73 

depend on microbial communities, and alter ecosystem-scale carbon and nitrogen 74 

cycling will be affected (Roose-Amsleg and Laverman, 2016; Robson et al., 2020). 75 

Furthermore, whilst bacterial populations rapidly evolve antibiotic resistance, this 76 

comes at a physiological cost. Antibiotic resistant bacteria tend to grow more slowly 77 

and use nutrients less efficiently than their non-resistant conspecifics (Anderson and 78 

Levin, 1999, Jansen et al 2013). As such, longer-term exposure to antimicrobial 79 

contaminations is likely to have implications for the efficiency of microbially-mediated 80 

processes in aquatic ecosystems (e.g. Rosi et al. 2018).  81 

By contrast, artificial estrogens, such as EE2, may provide a novel carbon source for 82 

aquatic microorganisms, supporting increased microbial metabolism (Ribeiro et al., 83 

2010; Pieper and Rotard, 2011), their adsorption onto microbial biofilms can provide 84 

protection against antimicrobial agents (Writer et al., 2012; Zhang et al., 2014).This 85 

was recently demonstrated by McClean and Hunter (2020), who showed that 86 

exposure of streambed biofilms to EE2 counteracted the inhibitory effects of 87 

ibuprofen upon microbial respiration. Consequently, the interactions between 88 

antibiotics and artificial estrogens upon aquatic microbial processes are likely to 89 

have wider environmental relevance.  90 

Contaminant exposure substrata (CES) experiment provides a powerful tool for 91 

testing the sensitivity of aquatic microbial communities to pharmaceuticals and other 92 
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pollutants (Tank et al, 2006; Costello et al, 2016). A well-refined method is provided 93 

by Costello et al (2016) to test how pharmaceuticals affect microbial biofilm growth 94 

and community structure and ecophsysiological responses of the biofilm, such as 95 

community respiration (Rosi-Marshall et al, 2013; Rosi et al., 2018; Gallagher and 96 

Reisinger, 2020; McClean & Hunter, 2020 Robson et al., 2020). These methods, 97 

however, provide insufficient information on heterotrophic processes such as 98 

microbial litter decomposition, which occurs over times-scales measured in weeks or 99 

months (Vannote et al, 1980; Raymond & Bauer, 2001). The Tea Bag Index (TBI) 100 

provides a powerful low-cost tool for investigating microbial activity in soils and 101 

aquatic systems, based upon the traditional use of leaf-litter bags in ecology 102 

(Keuskemp et al., 2013; Whigham et al., 2017; Mueller et al., 2018; Seelen et al., 103 

2019. The key strength of TBI is its ability to provide a standardized method of 104 

quantifying microbial activity by comparing the relative degradation of green tea 105 

(easy to decompose, or labile material) and rooibos tea (resistant to decomposition, 106 

recalcitrant, lignified material) organic matter source. The use of TBI within 107 

contaminant exposure substrata experiments will allow quantification of the impacts 108 

of pollutant exposure on microbially-mediated litter decomposition. 109 

Within this study we investigate how interactions between the antibiotic trimethoprim 110 

and the artificial estrogen EE2 affect aquatic litter decomposition, using modified 111 

contaminant exposure experiments. We integrate the TBI (Keuskemp et al., 2013) 112 

into the existing CES methodology developed by Tank et al (2006) and Costello et al 113 

(2016). This will provide a simple, low-cost tool for assessing how pharmaceuticals 114 

(and other contaminants) may affect microbial litter decomposition. Using the TBI-115 

CES method we test how exposure of the microbial community to both trimethoprim 116 

and EE2 affects the decomposition of both labile and recalcitrant litter in a mixed-use 117 

catchment stream. We hypothesize that trimethoprim will inhibit decomposition while 118 

EE2 may enhance it. We therefore expect that EE2 may mediate against any 119 

inhibitory effects of trimethoprim upon the microbial activity that drives litter 120 

decomposition. 121 

  122 
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2. Materials and Methods 123 

2.1. Site Description 124 

Experiments were carried out between 22nd March and 13th June 2019 in the 125 

Ballysally Blagh (Latitude: 55°08'48.9"N Longitude: 6°40'08.0"W), a ground-water fed 126 

second-order stream draining a mixed agricultural (consisting of 21.9 % arable; 55.9 127 

% grassland; 13.7 % heathland; 1.9 % woodland) and urban (7.3 %) catchment of 128 

14.2 km2. Mean volumetric water flow in the Ballysally Blagh is 0.21 (± 0.27) m3 s-1, 129 

measured at a V-shaped weir. Water temperatures at the study site (50 cm water 130 

depth) were recorded at 1-hour intervals throughout the experiment using a HOBO 131 

MX2204 Bluetooth temperature logger and ranged between 5.51 oC and 15.57 oC, 132 

with a mean temperature over the study period of 10.17 (± 2.08) oC. 133 

2.2. Contaminant Exposure Substrata Experiments 134 

Contaminant exposure substrata (CES) experiments were conducted using forty 120 135 

ml screw cap sample pots, with a 35 mm hole drilled into the lid (following Costello et 136 

al, 2016). Each pot was filled with 100 ml of 2 % agar, with ten pots spiked with 688 137 

mol.l-1 Trimethoprim (Sigma-Aldich, product no: 92131), ten with 688 mol.l-1 of 138 

EE2 (Sigma-Aldrich, Product No. E4876) and ten with 688 mol.l-1 trimethoprim and 139 

688 mol.l-1 EE2. The remaining ten sample pots received no pharmaceutical 140 

treatment (control). Trimethoprim and EE2 stock solutions for were made up in 70 % 141 

ethanol, with 1 ml aliquots used to spike each contaminant exposure experiment, 142 

whilst the agar in the control treatments was spiked with 1 ml doses of 70 % ethanol. 143 

All pots were weighed to determine mass of agar within. One pre-weighed unused 144 

Lipton® Green Tea Sencha pyramidal tea bag with non-woven fabric (Product 145 

Number: EAN 87 22700 05552 5) and one pre-weighed unused Lipton® Rooibos tea 146 

bag with non-woven fabric (Product Number: EAN 87 22700 18843 8) were the 147 

placed into each pot screw cap secured in place. The contaminant exposure 148 

experiments were then secured to four L-shaped metal bars (Length = 1000 mm; 149 

Width = 35 mm; Height = 35 mm) and deployed onto the streambed at 30 – 40 cm 150 

depth (Figure 1). 151 

CES experiments were left in place for 83 days. Upon recovery, the teabags were 152 

removed from the experiment and the pots were then weighed to determine the agar 153 

mass loss (following Costello et al, 2016). Teabags were dried to constant weight 154 
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over 72 hours at 60 oC, excess silt and detritus adhering to each teabag was gently 155 

removed, and their dry-weight determined (following Keuskamp et al, 2013). The tea 156 

was then removed from each teabag, re-weighed and combusted at 550 oC for four 157 

hours to determine ash free dry mass. 158 

 159 

2.3. Data Treatment 160 

We calculated percentage mass loss of green tea and rooibos tea in each 161 

contaminant exposure experiment as the difference between the dry weight of the 162 

teabag at the start and end of the incubation. We corrected for mass loss during the 163 

drying process based on the mean mass loss for five air-dry green teabags and five 164 

air-dry rooibos teabags, dried at 60 oC over 72 hours. Following Keuskamp et al. 165 

(2013) we then determined the organic matter stabilization factor (STBI) as: 166 

[1] 𝑆்஻ூ = 1 −  
௔೒

଴.଼ସଶ
 167 

Where ag is the decomposable fraction of the green tea (ash free dry weight) and 168 

0.842 is the hydrolysable fraction of the green tea (from Keuskamp et al, 2013). 169 

Using S we then estimated the decomposable fraction of the rooibos tea (ar) as: 170 

[2] 𝑎௥ = 0.552 (1 − 𝑆்஻ூ) 171 

Where STBI is the stabilization factor and 0.552 is the hydrolysable fraction of the 172 

rooibos tea (from Keuskamp et al, 2013). The organic matter Initial decomposition 173 

rate of the labile material (kTBI) can then be calculated as: 174 

[3]  𝑘்஻ூ =  
ቀ୪୬ቀ

ೌೝ
ೈ

ቁቁ

௧
 175 

Where W is the mass loss of the Rooibos teabag in each experiment (in grams) and 176 

t is the duration of the experimental incubation (in days).  177 

2.4. Data Analysis 178 

Data analysis and visualization was carried out in R using the base and ggplot 179 

packages (R Development Core Team, 2009; Wickham, 2016). We tested for 180 

independent and combined effects of trimethoprim and EE2 upon the percentage 181 
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mass loss of the Green tea and Rooibos teabags, the stabilization factor (STBI) and 182 

Initial decomposition rate (kTBI) of the labile organic material using two-way analysis 183 

of variance (ANOVA). Post-hoc testing of significant interactions were conducted 184 

using Tukey’s test for Honest Significant Difference. All data were visually explored 185 

to ensure they conformed to the assumptions of normality and homoscedacity 186 

(following Zuur et al, 2010), Initial decomposition rate (kTBI) data were log10 187 

transformed to ensure that the residuals from the ANOVA model conformed to a 188 

normal distribution. See supplementary table 1 for a summary of the ANOVA test 189 

results. 190 

3. Results and Discussion 191 

Over the course of the experiment, dissolution of the agar was assumed to deliver 192 

constant daily doses of approximately 275 nmol .d-1 of trimethoprim and/or EE2 in 193 

both the single and combined pharmaceutical treatments. As such, each teabag 194 

would have been exposed to a pharmaceutical dose that was broadly comparable 195 

with the concentration of these compounds in inland waters (e.g. Álvarez-Muñoz et 196 

al, 2015; Archer et al, 2017; Tousova et al., 2017). Rooibos Tea mass loss 197 

decreased upon EE2 exposure, with no additional/significant effects of trimethoprim 198 

(Figure 2 A, Table 1a). By contrast for green tea, we observed additive and inhibiting 199 

effects of both trimethoprim and EE2 (Figure 2 B, Table 1b). Based on these data we 200 

can demonstrate that EE2 and trimethoprim had significant independent effects upon 201 

both the TBI stabilization factor (Figure 3 A, Table 1c) and initial decomposition rate 202 

(Figure 3 B, Table 1 d). 203 

Trimethoprim decreased mass loss of green tea but not of rooibos, while EE2 204 

decreased both green tea and rooibos mass loss. Together, these pharmaceuticals 205 

had additive negative effects on green tea mass loss but not on rooibos. No 206 

significant interaction was observed for either green tea or rooibos. Further, EE2 and 207 

trimethoprim had significant independent effects upon both the litter stabilization 208 

factor (Figure 3 A, Table 1c) and initial decomposition rate (Figure 3 B, Table 1 d) 209 

Our results demonstrate that exposure to low doses of both an antibiotic 210 

(trimethoprim) and an endocrine disruptor (EE2) inhibit microbial litter decomposition. 211 

Specifically, trimethoprim appears to affect decomposition of lignified material less 212 
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compared to more easy to degrade material, whilst EE2 had a broader effect across 213 

litter types. In counter to our hypothesis, EE2 did not reduce the negative impact of 214 

trimethoprim upon aquatic litter decomposition. Both trimethoprim and EE2 had 215 

significant additive positive effects upon the organic matter stabilization factor (STBI) 216 

and its initial decomposition rate (kTBI). Our study, thus, indicates that pollution from 217 

both pharmaceuticals may increase the residence time for organic matter in aquatic 218 

systems. Inland waters (rivers, lakes and streams) typically receive large inputs of 219 

terrestrial organic matter, which is then partially metabolized, temporarily buried 220 

within the sediment or transported to the ocean (Battin et al, 2009). Our study adds 221 

further evidence to that pharmaceutical contaminants directly affect the rates and 222 

pathways for aquatic carbon and nutrient cycling (e.g. Jobling et al. 2003; Hernando 223 

et al. 2006; Gros et al. 2007; Rosi-Marshall and Royer 2012; Rosi-Marshall et al. 224 

2013; Álvarez-Muñoz et al. 2015; Ruhí et al. 2016; Archer et al. 2017; Rosi et al. 225 

2018; Gallagher and Reisinger 2020; McClean and Hunter, 2020).  226 

Given the widespread use of trimethoprim as an antibiotic medication and its high 227 

solubility in water [ranging from 500 mg l-1 at pH 8 to 15,500 mg l-1 at pH 5.5 (Dahlan 228 

et al. 1987)], its effect upon microbial activity within the teabag experiment was 229 

expected. As a highly soluble contaminant trimethoprim is likely to leach rapidly from 230 

the agar within CES experiments, and thus affect microbial activity during the early 231 

phases of the experiment. Thus the effects of trimethoprim upon labile litter 232 

decomposition are likely to reflect the relatively high solubility of this contaminant. By 233 

contrast, EE2 exhibits relatively low solubility in water, ranging between 2.92 and 4.8 234 

mg l-1 (Lai et al., 2000; Ying et al. 2002; Guo and Hu, 2014). This property of EE2, 235 

combined with its tendency to adsorb onto organic substances (Lai et al., 2000; Ying 236 

et al., 2002; Writer et al., 2012; Zhang et al., 2014), provides a mechanism through 237 

which the EE2 released by the agar would affect the degradation of more recalcitrant 238 

and lignified litter. The additive effects of trimethoprim and EE2 upon litter 239 

decomposition within our experiment were likely to be driven by differences in the 240 

solubility of each compound and their potential to adsorb onto the tea. This highlights 241 

how differences in the physico-chemical properties of pharmaceutical mediate their 242 

potential impacts in aquatic biogeochemical processes.  243 
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CES experiments are typically used to determine the effects of a selected 244 

contaminant on biofilm forming bacteria and algae (Tank et al., 2006; Costello et al., 245 

2016). Integrating the TBI (Keuskemp et al. 2013) into CES experiments provides a 246 

useful low-cost tool to quantify how exposure to pollutants such as pharmaceuticals 247 

affects instream decomposition of organic matter. The inclusion of both a labile 248 

(green tea) and more recalcitrant (rooibos tea) organic matter source within the 249 

experiment allows inferences to made upon the effects of a contaminant upon the 250 

phenology of the litter decomposition process. Refinement of the method is, 251 

however, necessary and should include investigation of agar dissolution and teabag 252 

degradation rates, and how these may vary under differing climatic and hydrological 253 

regimes (following Costello et al., 2016).  254 

Whilst our study was restricted to one stream, the method could easily be replicated 255 

at multiple sites, within more complex experimental designs. We believe this method 256 

will allow the effects of multiple pollutants upon organic matter degradation and 257 

residence times to be made across a range of spatial and temporal scales in both 258 

freshwater and marine systems. As our method is characterized by its low-cost, 259 

simplicity and use of readily available consumer products, it could potentially be used 260 

to achieve high levels replications within experimental designs testing the 261 

interactions between a suite of multiple pollutants and their effects upon aquatic 262 

biogeochemical processes. Furthermore, we propose that the TBI-CES method 263 

could provide a valuable pedagogical tool for research-led environmental science 264 

teaching and in citizen science based initiatives to investigate the impacts of 265 

pollutants in aquatic systems. 266 
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Tables 404 

Table 1. Two-way analysis of variance testing for significant effects of trimethoprim 405 

and EE2 upon the percentage mass loss of the Green tea and Rooibos teabags, the 406 

organic matter stabilization factor (STBI) and initial decomposition rate (kTBI). 407 

a) Percentage mass loss of Green tea 
                        Df SSq    MSq          F         p    

Trimethoprim             1  105.89  105.889  10.486  0.003 ** 
EE2                      1  108.43  108.428  10.738  0.002 ** 
Trimethoprim:EE2   1     16.26    16.259    1.610  0.213    
Residuals               36  363.52    10.098  
Adjusted R2    0.3371 
b) Percentage mass loss of Rooibos tea 

                        Df         SSq       MSq       F          p  
Trimethoprim             1        8.430     8.430    1.342  0.254    
EE2                     1     70.510   70.510  11.225  0.002 ** 
Trimethoprim:EE2   1        8.399     8.399    1.337  0.255    
Residuals               36  226.119     6.281  
Adjusted R2                    0.219 

c) stabilization factor (STBI)  
                         Df SSq MSq        F        p    
Trimethoprim             1  0.015  0.015 10.486  0.003 ** 
EE2                     1  0.015  0.015  10.738  0.002 ** 
Trimethoprim:EE2   1  0.002  0.002   1.610  0.213    
Residuals               36  0.051  0.001 
Adjusted R2    0.337 

d) Initial decomposition rate (kTBI)  
                                      Df          SSq   MSq         F      p     
Trimethoprim                 1           1.073   1.073     5.389   0.026 *   
EE2                                1           2.594   2.594  13.025 <0.001 *** 
Trimethoprim:EE2          1           0.112   0.112     0.564   0.458     
Residuals                       35         6.972   0.199 
Adjusted R2                    0.29 
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Figures 409 

Figure 1. Images of (A) the TBI contaminant exposure experiments, (B) how they are 410 

secured prior to the L-shaped metal bars and (C) their deployment at the streambed 411 

(right panel)  412 

 413 
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Figure 2. Effects of TMP ( ) and EE2 ( ) on the degradation (% mass loss) of A) 415 

Rooibos and B) Green tea, as labile and recalcitrant organic matter sources. Inserts 416 

show pooled data where significant independent effects of either Trimethoprim or 417 

EE2 where detected. Significance levels: *** p < 0.001; ** p < 0.01; * p < 0.05.  418 

 419 
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Figure 3. Effects of TMP ( ) and EE2 ( ) on the A) TBI stabilization factor and B) 421 

initial decomposition rate, calculated following Keuskamp et al (2013). Inserts show 422 

pooled data where significant independent effects of either Trimethoprim or EE2 423 

where detected. Significance levels: *** p < 0.001; ** p < 0.01; * p < 0.05. 424 

 425 

 426 


