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ARTICLE INFO ABSTRACT

Keywords: Submarine canyons are associated with increased biodiversity, including cold-water coral (CWC) colonies and
Species distribution models reefs which are features of high conservation value that are under increasing anthropogenic pressure. Effective
Submarine canyons spatial management and conservation of these features requires accurate distribution maps and a deeper un-
Cold-water corals derstanding of the processes that generate the observed distribution patterns. Predictive distribution modelling
offers a powerful tool in the deep sea, where surveys are constrained by cost and technological capabilities. To
date, predictive distribution modelling in canyons has focussed on integrating groundtruthed acoustically ac-
quired datasets as proxies for environmental variables thought to influence faunal patterns. Physical oceano-
graphy is known to influence faunal patterns but has rarely been explicitly included in predictive distribution
models of canyon fauna, thereby omitting key information required to adequately capture the species-en-
vironment relationships that form the basis of predictive distribution modelling. In this study, acoustic, ocea-
nographic and biological datasets were integrated to undertake high-resolution predictions of benthic mega-
faunal diversity and CWC distribution within Whittard Canyon, North-East Atlantic. The main aim was to
investigate which environmental variables best predict faunal patterns in canyons and to assess whether in-
cluding oceanographic data improves predictive modelling. General additive models, random forests and
boosted regression trees were used to build predictive maps for CWC occurrence, megafaunal abundance, species
richness and biodiversity. To provide more robust predictions, ensemble techniques that summarise the variation
in predictions and uncertainties between modelling approaches were applied to build final maps. Model per-
formance improved with the inclusion of oceanographic data. Ensemble maps identified areas of elevated cur-
rent speed that coincided with steep ridges and escarpment walls as the areas most likely to harbour CWCs and
increased biodiversity, probably linked to local hydrodynamics interacting with topography to concentrate food
resources. This study shows how incorporating oceanographic data into canyon models can broaden our un-
derstanding of processes generating faunal patterns and improve the mapping of features of conservation,
supporting effective procedures for spatial ecosystem management.

Internal tide

1. Introduction Arcaya et al., 2017). Canyons are characterised by high spatial and
temporal heterogeneity in environmental conditions (De Leo et al.,

Submarine canyons are environmentally complex geomorphological 2014; Amaro et al., 2016), often resulting in enhanced regional and
features that incise continental margins and act as conduits between the local productivity, biodiversity, and faunal abundance (De Leo et al.,
shelf and the deep sea (Allen and Durrieu de Madron, 2009; Huvenne 2010; Vetter et al., 2010; De Leo et al., 2014). Reef-forming cold-water
and Davies, 2014; Puig et al., 2014; Amaro et al., 2016; Fernandez- coral colonies (from here indicated as CWC) and reefs in particular
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represent features of high conservation value that can occur within
canyons and are under increasing anthropogenic pressure (92/43/EEC,
1992; OSPAR, 2008; Davies et al., 2017). Accurate distribution maps of
these features, in addition to an understanding of the processes that
drive the observed spatial patterns, can support their effective spatial
management and conservation (Huvenne and Davies, 2014; Buhl-
Mortensen et al., 2015; Anderson et al., 2016a). In the deep sea, where
surveys are constrained by costs and technological capabilities, pre-
dictive mapping offers a powerful tool for such studies (Robert et al.,
2015; Anderson et al., 2016a; Robert et al., 2016). Predictive mapping
is based upon models of species—environment relationships that enable
predictions of the likely occurrence of species beyond where they have
been sampled (Guisan and Zimmermann, 2000; Guisan and Thuiller,
2005). These techniques are based upon concepts of niche theory,
whereby species’ distributions are determined by the environmental
dimensions of their ecological niche (Guisan and Zimmermann, 2000).
Therefore, accurate predictions rely upon the incorporation of ecolo-
gically relevant environmental data collected at resolutions which
capture the scale at which these variables influence species spatial
patterns (Lecours et al., 2015; Miyamoto et al., 2017; Misiuk et al.,
2018; Porskamp et al., 2018).

In submarine canyons, acoustically derived environmental variables
(e.g., depth, slope) are routinely used as indirect proxies for direct and
resource variables (sensu Guisan and Zimmermann, 2000) including,
water mass characteristics (temperature, salinity, potential density,
dissolved oxygen concentration, aragonite compensation level and pH),
substratum, seafloor characteristics, current exposure and food supply
(Wilson et al., 2007; Robert et al., 2015); all of which have been shown
to act at multiple scales to influence faunal patterns in canyons (De Mol
et al., 2011; Howell et al., 2011; Baker et al., 2012; De Leo et al., 2014;
Bargain et al., 2018). For example, water mass characteristics tend to
influence canyon fauna at spatial scales of 10-1000 km (Dullo et al.,
2008; Fabri et al., 2017) at which resolution they often co-vary with
depth (Henry et al., 2014). On the other hand, spatial variation in
seafloor characteristics and substratum are influential at finer resolu-
tions of < 1-10 km (Howell et al., 2011; Robert et al., 2015; Fabri
et al., 2017), which can be captured by terrain derivatives such as slope
and rugosity (Wilson et al., 2007; Howell et al., 2011). Equally at this
resolution, aspect can provide insights into areas that may be more
exposed to currents (Wilson et al., 2007; Robert et al., 2015).

However, the sole use of indirect variables as proxies can hinder
ecological interpretation, as a single proxy can be collinear with mul-
tiple direct and/or resource variables across varying scales (Wilson
et al., 2007; Porskamp et al., 2018) and because the measured proxy
does not influence organisms’ distributions directly, it can lead to fur-
ther predictive inaccuracies. In addition, environmental data are often
acquired at low resolutions that reflect technological constraints rather
than being ecologically meaningful (Verfaillie et al., 2009; Huvenne
and Davies, 2014; Ismail et al., 2015; Lecours et al., 2015; Porskamp
et al., 2018). These data are then incorporated into models at a pre-
determined single fixed resolution as opposed to the increasingly ad-
vocated approach of incorporating data at multiple resolutions to then
statistically identify the resolution that best captures the variability in
the environment to which fauna are responding (Wilson et al., 2007;
Fourniera et al., 2017; Porskamp et al., 2018). Consequently, the use of
indirect variables together with the mismatch of resolution between
ecological processes and data sampling represent key limitations of
predictive model and map accuracy and precision (Brown et al., 2011;
Lecours et al., 2015, Lo Iacono et al., 2018; Porskamp et al., 2018).

Physical characteristics of the water column and oceanographic
processes are known to influence faunal patterns, including those of
CWCs (Dullo et al., 2008; De Mol et al., 2011; Flogel et al., 2014; Fabri
et al.,, 2017) but have rarely been included in predictive models of
canyon fauna, one exception being Bargain et al (2018). In canyons
supporting intense hydrodynamic processes (Hall and Carter, 2011;
Aslam et al., 2018) variability in faunal patterns has been observed and
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Fig. 1. Location map of (A) the Whittard Canyon and (B) data acquisition
during the JC010, JO36 and JC125 cruises over the Whittard Canyon Eastern
branch and the adjoining Dangaard and Explorer Canyons. Background
bathymetry from GEBCO Compilation Group, 2019.

attributed to the increased heterogeneity in physical oceanography
(Huvenne et al., 2011; Johnson et al., 2013). As such, canyons represent
model systems for testing the role of physical oceanography in con-
trolling faunal distribution patterns.

Here we develop predictive distribution models for CWCs and epi-
benthic megafaunal biodiversity using a multiscale approach in-
tegrating bathymetric and oceanographic datasets and their derivatives
in the Whittard Canyon (North-East Atlantic) to investigate which en-
vironmental variables best predict faunal patterns. Finally, we aim to
assess how the inclusion of oceanographic variables affects model
performance, testing the null hypothesis that the inclusion of physical
oceanographic variables in distribution models has no effect on model
accuracy or precision.

2. Methods
2.1. Study area

Whittard Canyon is located along the Celtic Margin, south-west of
the British Isles in the Northern Bay of Biscay and extends > 200 km
(Fig. 1). It is a dendritic canyon system comprised of four main tribu-
taries, the Western-, Western Middle-, Eastern Middle- and Eastern-
branches, incising the shelf edge at a depth of ~ 200 m and coalescing
at ~ 3700-3800 m water depth, then developing as Whittard Channel
up to a depth of ~ 4500 m, where the it joins the Celtic Fan that leads
onto the Porcupine Abyssal Plain (Hunter et al., 2013; Amaro et al.,
2016). Intensified bottom currents and internal tides have been
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Table 1

ROV dives in the Whittard Canyon analysed in this study: Dive code, start and end position (degrees and decimal minutes), dive length (m) and depth range across

dive (m).
Dive Start Position End Position Length (m) Depth Range (m)
JC125.113 48°22.296'N 10°2.374'W 48°22.296'N 10°2.374'N 1850 2619-3199
JC125_250 48°43.803'N 10°5.842'W 48°43.803'N 10°5.842'N 600 751-886
JC125_259 48°24.049'N 9°59.867'W 48°24.049'N 9°59.867'N 2000 2148-2987
JC125_262 48°44.149'N 10°5.965'W 48°44.149'N 10°5.965'N 965 464-879
JC125_263 48°38.331'N 10°0.514'W 48°38.331'N 10°0.514'N 1600 1138-1422
JC_10_065 48°25.908'N 9°56.432'W 48°25.908'N 9°56.432'N 6585 464-2634
JC_036_115 48°36.742'N 9°57.297'W 48°36.742'N 9°57.297°'N 3000 1222-1667
JC_036_116 48°39.251'N 10°1.903'W 48°39.251'N 10°1.903'N 1500 910-1407
JC.036_117 48°27.646'N 9°56.958'W 48°27.646'N 9°56.958'N 2050 1762-2470

associated with the canyon, making it a good candidate for in-
vestigating the impact of physical oceanography on faunal patterns
(Reid and Hamilton, 1990; Hall et al., 2017; Aslam et al., 2018). Within
the canyon system are the Dangaard and Explorer Canyons that to-
gether constitute the only deep-sea marine conservation zone (MCZ)
within English waters. The Canyons MCZ designation is based upon the
presence of the ‘Deep-sea bed’ broadscale habitat and ‘Cold-water coral
reefs’, ‘Coral gardens’ and ‘Sea-pen and burrowing megafauna com-
munities’ habitat features of conservation interest (JNCC, 2013; Davies
et al., 2014; DEFRA, 2019). Accurate predictive maps of these features
based on key environmental predictors are essential to assist effective
management of the MCZ. This study focuses on the Eastern branch of
Whittard Canyon and the adjoining Dangaard and Explorer Canyons
(Fig. 1). This region of the Whittard Canyon system was chosen as the
Eastern branch has been identified as the most hydrodynamically en-
ergetic while the Dangaard and Explorer Canyons incise the Brenot
Spur, which is postulated to be a generation site for the internal tide
that propagates into the Eastern branch (Aslam et al., 2018).

Whittard Canyon exhibits heterogeneity in both physical and
oceanographic attributes. The geomorphology and substrata of the
canyon are complex, with variability observed along the canyon axis
and between branches (Stewart et al., 2014; Robert et al., 2015; Amaro
et al., 2016; Ismail et al., 2018). The heads of the canyons are char-
acterised by steep-sided walls and coarser substrata (outcropping bed-
rock, boulders and cobbles) (Carter et al., 2018). Where the branches
coalesce, the Whittard Channel leads further downslope to the deposi-
tional fan comprised of finer grained substrata (fine sand, silt and
hemiplegic ooze). Sediment dynamics within the canyon are poorly
understood. Although developing on a passive margin, Whittard
Canyon does experience sediment dynamics (Amaro et al., 2016; Carter
et al.,, 2018). Resuspension by intensified bottom currents and local
slope failures within the canyon facilitate the availability of fine
grained material (Reid and Hamilton, 1990; Amaro et al., 2015, 2016;
Hall et al., 2017; Carter et al., 2018) which is then transported via
active down-slope transport in the form of turbidity currents and mud-
rich sediment gravity flows (Cunningham et al., 2005; Amaro et al.,
2016).

As it descends, the canyon intersects several water masses, including
the Eastern North Atlantic Water (ENAW) (~100-600 m), the
Mediterranean Outflow Water (MOW) (800-1200 m) and the Northeast
Atlantic Deep Water (NEADW) (1500-3000 m), within which occurs a
core of Labrador Sea Water (LSW) (~1800-2000 m) (Pollard et al.,
1996; Van Aken, 2000). Mixing occurs along the water mass boundaries
(Van Rooij et al., 2010). Barotropic tidal currents interact with the steep
canyon topography converting some of the energy into baroclinic in-
ternal waves (Allen and Durrieu de Madron, 2009; Hall et al., 2017) and
partly standing internal waves have been observed within the Eastern
branch (Hall et al., 2017). Internal wave driven turbulent mixing is
associated with increased concentrations of particulate organic matter
(POM) and nepheloid layer production within the canyon (Wilson et al.,
2015; Hall et al., 2017; Aslam et al., 2018).

2.2. Data acquisition and analysis

Data were collected during (1) the JC124_JC125 expedition funded
by the ERC CODEMAP project (Starting Grant no 258482), the NERC
MAREMAP programme and the Department of Environment, Food &
Rural Affairs (DEFRA), (2) the JC010, JC035 and JC036 expeditions
funded by the NERC core programme OCEANS2025 and the EU FP7 IP
HERMIONE, and (3) the MESH expedition funded by the Community
Initiative, and DEFRA.

2.2.1. Video data acquisition and analysis

During the JC010 and JC036 cruises, video data were acquired
using the remotely operated vehicle (ROV) Isis equipped with a stan-
dard definition video camera (Pegasus, Insite Tritech Inc. with SeaArc2
400 W, Deep sea Power & Light illumination) and stills camera
(Scorpio, Insite Tritech Inc., 2048 X 1536 pixels). For the JC125 cruise,
the ROV Isis was equipped with a dual high definition stills and video
camera (Scorpio, Insite Tritech Inc., 1920 X 1080 pixels). Positional
data were derived from the ROV’s ultra-short baseline navigation
system (USBL). A total of nine dives were completed in the Eastern
branch (Fig. 1 and Table 1) at an average speed of ~ 0.08 m s~ ! and an
average camera height of 3 m from the seafloor (Robert et al., 2015).
Video footage from the dives was analysed with all epibenthic mega-
fauna > 10 mm annotated and georeferenced, organism size was es-
timated from a laser scale with parallel beams positioned 10 cm apart.
Due to limited species taxonomic knowledge for the area, fauna were
identified to the lowest taxonomic level possible and identified as
morphospecies (visually distinct taxa). To ensure consistency in no-
menclature and improve comparability of annotations, the developed
morphospecies catalogue was based upon the CATAMI nomenclature
(Althaus et al., 2015) and cross-referenced against the Howell and
Davies (2010) morphospecies catalogue for the North-East Atlantic
Deep Sea. Those sections where the ROV altitude was > 4 m for ex-
tended periods, prohibiting annotations, were noted by time and not
considered in subsequent analysis. Video data annotations from the
JCO010, JCO36 (previously annotated by Robert et al. (2015)) and JC125
cruises were combined into a single data matrix with possible annotator
bias in the combined dataset assessed following the protocol set out in
Durden et al. (2016) (see supplementary materials S1.1). Transects
were subdivided into 50 m length sections and the morphospecies re-
cords within each section consolidated, with Species richness, Simp-
son’s reciprocal index (1/D) (Simpson, 1949) and megafaunal abun-
dance calculated for each 50 m section sample. These metrics were
chosen as together they capture the key faunal responses to environ-
mental heterogeneity (McClain and Barry, 2010; Amaro et al., 2015).
Presence-absences for three scleractinian reef forming species, Desmo-
phyllum pertusum (formerly Lophelia pertusa), Madrepora oculata and
Solenosmilia variabilis were combined to provide a CWC presence-ab-
sence value. This was recorded because reef forming scleractinians re-
present features of high conservation value that are often associated
with increased diversity (OSPAR, 2008; 92/43/EEC, 1992; Davies et al.,
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2017). Additionally, as long-lived immobile filter feeders that are as-
sociated with sustained hydrodynamics (Dullo et al., 2008; Howell
et al., 2011; Fabri et al., 2017), CWCs represent good candidates for
investigating the role of physical oceanography on faunal distributions.

All statistical analyses were conducted using the open source soft-
ware R (R_Core Team, 2014), packages “sp”, “maptools”, “rgeos”,
“vegan”, “clustersim” and “MASS”.

2.2.2. Acoustic data acquisition and processing, and extraction of terrain
derivatives

Multibeam echosounder (MBES) data were acquired during the
MESH, JC035 and JC125 cruises with the ship-board Kongsberg Simrad
EM120 MBES system of RRS James Cook (Masson, 2009; Huvenne et al.,
2016) and Kongsberg Simrad EM1002 MBES system of RV Celtic Ex-
plorer (MESH, Davies et al., 2008). Bathymetry data were processed
utilising CARIS HIPS & SIPS v.8 and combined utilising the mosaic to
new raster tool in ArcGIS 10.4.1, to produce a new grid at a resolution
of 50 m (WGS1984, UTM Zone 29 N).

Terrain derivatives previously identified as useful in predictive
mapping (Wilson et al., 2007; Brown et al., 2011) were extracted from
the bathymetry using the ArcGIS extension Benthic Terrain Modeler v.
3.0 (Walbridge et al., 2018). Slope, eastness, northness, curvature, fine
and broad bathymetric position index (BPI) and rugosity
(VRM = Vector Ruggedness Measure) were calculated.

The bathymetric position index is a derived metric of a cell’s posi-
tion and elevation relative to its surrounding landscape/cells within a
user defined area (Wright, 2005). A combination of broad and fine scale
BPI metrics were derived to enable features at varying scales to be
identified (Wilson et al., 2007). Broad scale BPI was calculated using a
neighbourhood analysis based upon an annulus with an inner radius of
2 pixels and an outer radius of 20 pixels with a scale factor of 1000.
Fine scale BPI was calculated using a neighbourhood analysis based
upon an annulus with an inner radius of 1 pixel and an outer radius of 2
pixels with a scale factor of 100. Rugosity is a measure of the ratio of
the surface area to the planar area and was calculated with a neigh-
bourhood size of 3 x 3 pixels (Wilson et al., 2007). Other scales were
also assessed (Supplementary S1.2). Slope is a measure of change in
elevation, and aspect (subsequently converted to eastness and north-
ness) measures the orientation of maximum change along the slope.
Curvature is a measure of the shape of the slope, with values indicating
whether a slope is convex or concave. Three types of curvature were
calculated: profile, planar and general. Each accentuates different as-
pects of slope shape and can provide indirect measures of different
processes relating to flow, erosion and deposition within the canyon
(Wilson et al., 2007).

To capture the range of spatial scales at which the terrain deriva-
tives may affect faunal distributions, a multiscale approach was im-
plemented, whereby terrain variables were derived from bathymetry
gridded at 50, 100 and 500 m. Statistical modelling (following the same
protocol to assess predictive value of variables as detailed in Section
2.3) was then applied to identify the most ecologically meaningful re-
solution to use for each variable, identified as those derivatives con-
tributing the greatest to variance explained. Terrain derivatives from
bathymetry gridded at 50 m were found to be optimal (Supplementary
$1.2), and were exported as rasters at 50 m resolution (Figs. 2 and 3) for
further modelling.

Bathymetric slope criticality to the dominant semi-diurnal internal
tide was calculated (Supplementary S1.3) from the processed bathy-
metry gridded at 50 m and the potential density derived from a ship-
based CTD cast acquired during JC125 (Fig. 1). Bathymetric slope cri-
ticality to the dominant semi-diurnal internal tide (a) can identify po-
tential areas within the canyon where up-slope propagating waves
could be reflected back down-slope toward the canyon floor (super-
critical, a > 1), be focussed toward the head of the canyon (sub-
critical, @ < 1) or, become trapped (near-critical, @ = 1) resulting in
waves breaking and mixing (Hall et al., 2017).
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2.2.3. Oceanographic data processing and derived environmental variables
Near bottom values for absolute salinity and conservative tem-
perature were extracted from the Forecasting Ocean Assimilation Model
7 km Atlantic Margin model (FOAM AMM?7) (O’Dea et al., 2014). The
FOAM AMMY7 is a coupled hydrodynamic-ecosystem model, nested in a
series of one-way nests. Values were averaged from daily means over a
three-year period to account for interannual seasonal variability.

Near bottom values for tidal current variables (R.M.S, Root mean
squared near-bottom baroclinic and barotropic current speed) over an
M, tidal cycle were calculated from velocity components extracted from
a 500 m resolution canyon region hydrodynamic model based on a
modified version of the Princeton Ocean Model, used to simulate the
dominant semi-diurnal internal tide in the Whittard Canyon region for
32 M, tidal cycles (Aslam et al., 2018). Both R.M.S baroclinic and
barotropic current speed were calculated to differentiate between the
influences of the two tides that exhibit different spatial patterns across
the canyon system (Fig. 3).

In order to represent the physical oceanographic conditions ex-
perienced by the benthos and match the resolution of the depth and
terrain derivatives, the oceanographic data were interpolated into ras-
ters at 50 m resolution in ArcGIS (Fig. 3). Interpolation was based upon
spatial variograms calculated in Golden Software Surfer V 8 and un-
dertaken by kriging using the Spatial Analyst tool box in ArcGIS. To
account for discrepancies in bathymetric resolution between the phy-
sical oceanographic models and the bathymetry gridded at 50 m,
bathymetry from the models was also exported and rasters created.
Depth discrepancies between the datasets were accounted for by ex-
tracting oceanographic and current values from the nearest corre-
sponding depths to that of the bathymetry gridded at 50 m.

2.3. Modelling

2.3.1. Modelling approaches

Modelling was conducted in the open source software R using a
variety of packages as detailed in Hijmans and Elith (2017) and Zuur
et al (2014a) including “randomForest”, “mgcv” and “gbm”.

Environmental variables coinciding with the mid-point of each 50 m
video transect segment were extracted from each of the environmental
rasters and combined with the corresponding values for abundance,
species richness, 1/D and CWC occurrence to form a single data matrix.
Data exploration was undertaken following Zuur et al (2010) and in-
dicated non-linear relationships between the response and environ-
mental predictor variables.

To fulfil model assumptions of independence and improve inter-
pretation of results, collinearity between environmental variables was
tested and correlated variables removed. Collinearity was tested with
Pearson’s correlation coefficient (pairwise correlations), variance in-
flation factor (VIF) scores and pair plots (Zuur et al., 2010, Zuur et al.,
2014a) (Supplementary S2). Variable pairs with Pearson’s correlation
coefficients > 0.5 and VIF scores > 5 were deemed correlated (Zuur
et al., 2014a). For each group of correlated environmental variables,
modelling using various techniques was undertaken (as described
below) with a representative of each group added in turn to assess its
predictive value by reviewing diagnostic plots of residuals and when
model assumptions were met, retaining those that explained the
greatest variance and gave the lowest Akaike’s Information Criterion
(AIC) score (Table 2). The AIC score is commonly applied to compare
model performance and measures the goodness of fit and model com-
plexity reflecting the variance explained penalised by the number of
explanatory variables. A lower AIC score indicates a better model fit
(Zuur et al., 2014a). This resulted in four of the 12 environmental
variables being retained.

Generalized Additive Models, Random Forests and Boosted
Regression Trees were used to determine which environmental vari-
ables explained the greatest variance in observed spatial patterns in
CWC presence-absence, species richness, 1/D and abundance. To assess
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the influence of physical oceanographic variables, model performance semi-variograms and correlograms. Low spatial autocorrelation was
with and without these environmental predictor variables was com- observed in model residuals due to the sub-sampling of the data into
pared. Spatial autocorrelation in model residuals was assessed with training and test datasets (see Section 2.3.2), together with the fact that
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Fig. 3. Maps (50 m pixel resolution) of the bathymetric derivatives used as environmental proxies in the predictive models, and of the environmental variables
derived from the FOAM AMM?7 ocean model and a canyon specific hydrodynamic model published by Aslam et al. (2018): (A) Northness, (B) Eastness, (C) Salinity (g/
kg), (D) Temperature (°C), (E) R.M.S current speed for the barotropic tide (m s~ 1), (F) R.M.S current speed for the baroclinic tide (m s~ ).

Table 2
Groups of correlated environmental variables. For each group, the variable
retained for the models is indicated in bold.

Groups of correlated variables

- Rugosity, F_BPI, B_BPI

- Slope, General curvature, Profile curvature, Planar curvature

« Depth, Temperature, Salinity

» R.M.S current speed for the baroclinic tide, R.M.S current speed for the
barotropic tide

sections of video transect were omitted due to data quality. Predicted
probability of CWC occurrence, species richness, 1/D and abundance
were mapped by applying each of the model algorithms to the full
spatial extent of the selected environmental variable rasters.

Random forests (RF) is a classification method that builds multiple
trees based upon splitting rules that maximise homogeneity in response

to predictors within branches, starting each time with a randomised
subset of data points and predictor variables (Breiman, 2001, Prasad,
2007). RF was chosen because it makes no underlying assumption of
the distribution of the response variable, is robust to overfitting, allows
for interactions between environmental variables and nonlinear re-
lationships between the response and environmental variables (Cutler
et al., 2007, Prasad, 2007). RF was run in classification mode for CWC
presence-absence data and regression mode for the continuous response
variables. Abundance was log + 1 transformed. Each random forest
was run with 1500 trees and the number of variables chosen at each
node split set to default (square root of the number of variables in the
model for classification and two for regression) with the out of bag
(OOB) settings set as default (Breiman and Cutler, 2018).

Boosted regression trees (BRT) is a combined classification and re-
gression method that builds a sequence of regression trees, with the
initial tree fitted to the entire dataset and subsequent trees added to fit
the remaining residuals (Elith, 2008). BRT was chosen as this method is
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robust to differing resolutions of data input and accommodates inter-
actions and nonlinear relationships (Elith, 2008). BRT models were
developed with cross validation on data using a tree complexity of 3
and learning rate of 0.001 with the optimum number of trees de-
termined using a step forward function using k-fold cross validation.
These parameter settings were chosen to ensure a minimum of 1000
trees were created and that the models did not overfit the data (Elith,
2008; Elith and Leathwick, 2009). For CWC presence-absence, a Ber-
noulli distribution was assumed, for species richness a Poisson dis-
tribution was assumed. Abundance was log + 1 transformed to improve
normality and modelled with a Gaussian distribution. Environmental
variables were assessed using the inbuilt gbm.simplify function that
specifies the optimum number of variables by dropping the least con-
tributing variables and comparing deviance minimum error and model
variance with and without that variable (Elith, 2008).

Generalized additive models (GAMs) are generalised models with
smoothers and link functions based on an exponential relationship be-
tween the response variable and the environmental predictor variables
(Zuur et al., 2014). This method was chosen because it can accom-
modate nonlinear relationships and produces ecologically intuitive
outputs (Zuur et al., 2014a). GAMs have successfully been applied to
model the distribution of marine species and habitats (Robert et al.,
2015). The degree of smoothing for the environmental variables was
selected based on the generalized cross validation (GCV) method and a
log link function was used for all models except CWC presence-absence
where a logit link function was used for the binary response. For CWC
presence-absence, a Binomial distribution was assumed. For species
richness and 1/D a Gamma distribution was assumed after exploring
several alternative distributions (Gaussian, Poisson, quasi-Poisson and
Negative-Binomial). Abundance was log + 1 transformed to improve
normality and modelled with a Gaussian distribution. Environmental
variables were assessed by a backward-step selection, whereby the
environmental variables resulting in the lowest deviance explained
were dropped one at a time and the model refitted until only statisti-
cally significant (p value < 0.05) variables remained in the models.
Overall model fit was then compared and the most parsimonious model,
identified as that containing those environmental variables that ex-
plained the maximal amount of variance whilst giving the lowest AIC
score, was selected.

2.3.2. Model performance

Model performance was assessed using a cross-validation procedure
in which models were trained using a random partition of data (70%)
and tested against the remaining portion (30%) (Guisan and
Zimmermann, 2000). Model accuracy was assessed in terms of the
model fit to the training dataset using AIC scores, diagnostic plots and
variance explained (Adjusted R?). Predictive performance was assessed
using the Area Under the Receiver operating Curve (AUC) score for
CWC presence-absence (Elith and Leathwick, 2009). The AUC score
indicates how well the model discriminates presences and absences. An
AUC score < 0.5 indicates that the model is no better than random and
an AUC score > 0.7 can be considered as adequately discriminating
presences from absences (Lobo et al., 2008). Due to the equal weighting
of misclassification errors by the AUC, measures of sensitivity and
specificity were also used to assess performance. Sensitivity is the
fraction of correctly predicted CWC presences, while specificity is the
fraction of correctly predicted CWC absences (Lobo et al., 2008). Pre-
dictive performance for the remaining models was assessed with cor-
relation coefficients (linear regression) between the predicted and ob-
served values.

2.3.3. Ensemble models

To provide more robust predictions, ensemble techniques that
summarise the variation in predictions and uncertainties between
modelling approaches were applied to build final maps. Ensemble
models are important when optimal models cannot be identified.
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Ensemble model maps based upon weighted AUC scores or correlation
coefficients of each of the algorithms were produced for each response
variable.

3. Results
3.1. Morphospecies and observed patterns in diversity

A total of 280 morphospecies were annotated from the video data.
Xenophyophores (representing ~ 17% of individuals) were the most
abundant morphospecies, followed by Acanthogorgia. sp (~10%),
Brachiopoda sp. 1 (~9%), Pentametrocrinus atlanticus (~8%) and
Cerianthidae (~7%). Due to poor video quality, Brachiopoda were not
annotated from the data collected during JC010 and JC036 and so are
omitted from further analysis. The predominant functional groups ob-
served were suspension (filter) feeders, followed by detritivores and
carnivores. Highest species richness (48) was sampled from a 50 m
transect segment of vertical wall hard substratum observed during the
dive JC125_262. This dive investigated a vertical wall community,
comprising filter feeders (Cerianthidae, Scleractinia, Alcyonacea,
Crinoidea, Actinaria, Porifera, Hydrozoa) detritivores (Echinus) and
carnivores (Asteroidiea and Galatheoidea) (Fig. 4). Highest diversity
(1/D) (12.6) was recorded from the same dive JC125_262. Highest
abundance (2149) was recorded from a 50 m transect segment on a
different vertical wall observed during dive JC036_116, with the
highest contributing taxa being D. pertusum (866 individual colonies)
and Acanthogorgia sp. CNI14 (8 8 2).

Reef-forming CWCs, varying from single colonies to reefs were ob-
served on seven dives amounting to 62 sample points out of 404. CWCs
occurred on hard substratum with steep to vertical topography between
water depths of 464-1892 m, temperature ranges of 5.6-9.6 °C, salinity
35.3-35.5 g/kg and R.M.S near bottom current velocities
0.09-0.29 m s~ . CWCs were observed from a broad depth and asso-
ciated temperature and salinity range because presence records re-
presented the combination of three Scleractinia reef forming species (M.
oculata, D. pertusum and S. variabilis) that occur across varying depth
ranges.

3.2. Modelling

3.2.1. Model performance

AUC scores for models of CWC presence-absence ranged from 0.96
to 0.99 (training dataset) to 0.82-0.93 (test dataset) indicating that all
models adequately discriminate presences from absences, with RF
performing the best (Table 3). Model sensitivity ranged from 0.35 to
0.87 (training dataset) to 0.21-0.60 (test dataset) and model specificity
ranged from 0.97 to 1.00 (training dataset) to 0.98-0.99 (test dataset)
with RF generally performing the best and GAM showing higher sen-
sitivity in test datasets (Table 3). Lower sensitivity values and similar
specificity and AUC values suggest a degree of overprediction of CWC
occurrences by the models (Table 3). Correlation coefficients (Adjusted
R?) between predicted and observed species richness, 1/D and abun-
dance ranged between 0.17 to 0.87 (training dataset) and 0.07-0.46
(test dataset) and were highest for RF, followed by BRT and GAM
(Table 4). The superior performance of RF could result from the in-
adequacy of available modelling distributions for the response variables
assumed for BRT and GAM (Zuur et al., 2014a).

3.2.2. Variable contribution in the predictive models

The environmental variables used for optimal models of CWC pre-
sence-absence, species richness, 1/D and abundance are shown in
Tables 3 and 4. The importance of the environmental variables varied
between the modelling algorithms. The models for CWC presence-ab-
sence ranked depth, rugosity and R.M.S baroclinic current speed as
important predictor variables (Table 3). Models of species richness and
abundance ranked depth as the most important predictor variable,



T.R.R. Pearman, et al.

Progress in Oceanography 184 (2020) 102338

Fig. 4. ROV video images showing organisms and substrata encountered: (A) Acesta sp., Neopycnodonte sp., Porifera, scleractinian corals and crinoids from vertical
wall substratum during dive JC125_262 at 477 m, (B) Brachiopod sp. 1, Acesta sp, Psolus squamatus, Porifera and echinoids from hard substrata during dive
JC125_263 at 1400 m, (C) Desmophyllum pertusum reef during dive JC125_262 at 790 m, (D) Brisingida sp. and Cidaris cidaris from hard substratum during dive
JC125_262 at 879 m, (E) Cerianthidae and Paguroidea from soft substratum during dive JC125_262 at 767 m, (F) Ceranthidae, Ophiuroidea, Cidaris cidaris, Munida
sp., Bathynectes sp., crinoids, and epifaunal turf from coral rubble during dive JC125_250 at 751 m. Scale bars = 10 cm.

whilst models for 1/D rank the predictor variables inconsistently
(Table 4). The inconsistent rankings of environmental variables be-
tween models could result from the similarity in their contributing
explanatory power and presence of interactions between the environ-
mental variables. For example, the BRT model including R.M.S bar-
oclinic current speed for 1/D, gave similar explanatory value to depth
(26%) followed by slope (23%), and then rugosity (17%), northness
(17%) and R.M.S baroclinic current speed (15%). Furthermore, BRT
pairwise interaction terms indicated interactions between depth and
R.M.S baroclinic current speed.

3.2.3. Influence of oceanographic data

The physical oceanographic variables were highly collinear and
only R.M.S baroclinic current speed was retained in the optimum
models. Overall model performance was improved with the inclusion of
R.M.S baroclinic current speed as an environmental predictor variable
(Tables 3 - 4). Spatial predictions from the ensemble model including
R.M.S baroclinic current speed showed increased diversity and in-
creased probability of CWCs in areas of elevated current speed that
coincided with steep topography (Figs. 5-8), while the extent of sui-
table CWC habitat predicted decreased (Fig. 5). For a CWC occurrence
threshold > 60%, the suitable habitat reduced from 387 km? to
174 km?, a decrease of 55%; for a threshold of > 70% the habitat
reduced from 125 km? to 13 km?, a decrease of 89% (thresholds con-
sistent with those applied by Bargain et al., (2018).

3.2.4. Model predictions

Model predictions were made across the full extent of available
environmental rasters. However, as the models were trained from
samples within the canyon branches, model predictions beyond this
extent are deemed less reliable. Therefore, we limit further analysis of
model predictions to within the canyon branches.

Ensemble models predicted increased probability of CWCs, and in-
creased species richness, 1/D and abundance at specific depths in areas
of increased terrain complexity that coincided with relatively elevated
current speed of the internal (baroclinic) tide.

Rugosity and slope were derived from 3 X 3 windows at a 50 m cell
size and captured spatial heterogeneity in terrain features over 150 m
resolution. Within the canyon, these relate to ridges between gullies
and steep to vertical wall escarpments. Gullies occur on the canyon
flanks and steep to vertical wall escarpments occur on the north-eastern
flank of Whittard Canyon’s Eastern branch as well as in association with
the amphitheatre rims and headwall scars at tributary heads throughout
the canyon (Fig. 5). Highest probability of CWCs, and highest species
richness, 1/D and abundance are predicted to occur in association with
the increased terrain complexity provided by these features. Further-
more, the ensemble models emphasise areas of increased biological
prevalence associated with elevated RMS baroclinic current speed and
coincident topography. These areas predominantly occur toward the
canyon head and north-eastern flank of the Eastern branch and a dog
leg region towards the lower reaches of Explorer Canyon (Figs. 3, 5-8).

CWCs exhibited a negative response with increasing depth be-
yond ~ 2000 m and an overall positive response with increasing R.M.S



02338
20) 1

4 (20

hy 18

in Oceanograp
Progress

L

an, et a

Pearm

T.R.R.

Pplemental..y
gedness (Su of CWCs in
seafloor rug robability robability
e and - ased p ighest p ents
ed, slop icted incre ity with hig escarpm .
ic current spe predicte plexity s and dicted in
baroclinic cu ble models d terrain com of ridge Cs, was pre hallow
s W(Cs, ts
Ensem. increase slope ility of C and a of
§3.1). E ith i the ability 00 m anks
association eredicted OHLOWeSt prob ~ 2000_25he southern ]
o CWCs p (Flg 5). ity below is and on tl . the
3 @ of 2000 m X mplex y N axis ips with
2|8 ° above ~ terrain co; f the canyo (Fig. 5). elationshlphibited an
E 8528 AR 2 8 areas of low sections o rd Canyonsted similar rnd 1/D ex h  peaks
= - = ‘o N a . .
= % g E g g s 2 depths alol’lf and Dangii 1/D eXhlbl'es richness a depth WIt'ng RM.S
'g E g g % =S o 3 the Explorerichness aln Both speci increasing ith increasi: ter than
§ 2 & ies iables. ith e Wi rea
s 8 < s | @ 3 S Specie varial wi ons ds g nd
= 5 7 : e itive resp ee e a
% £ @ E 2| & o < nvironmentaltive responjl a positive negative at. Slzreased Slopdicted
80 o g o = N N € ega howe me to in 1 pre
L ax 2 = S| o 25 11 n s ich beca se dels N
b= =] = = Ta. They hich spon le mo in com
S g £ g | = S 3 ove 0 m. dw itive re: mb. rrain
58% 5 g | & 5 ~ 120 spee ositi Ense ed te nd
52 2 g | & 2 g 3 at ~ 1 ic current poverall p tary S3.1). of increas he crests a
5858 2 i1g g baroclinic ¢ and an plemen in areas nts and t nd 7, re-
25 2 g 2 ~ 5ms ess (Sup d1/D scarpme Figs. 6 a s of
= Eo?): % S |~ & g 0.2 r ruggedn ichness an dicted on e 1200 m ( icted in area hs
SE53 Elg ¢ afloo cies r pre ing at redic dept!
9 3 [ S = e o se d spe alues aking as p llow
s & increase ighest valuc pe 1/D w t sha f the
298 @ < ® 1ncreased h hig] idges, nd nd a ks o
oS = ity witl s of r ichness a Oma flan
S g 2 i~ O lexity ing slope ies ric 0-250 thern
S ] = P cing ecies 200! he sou ively).
S E g =) < uth fa er sp low ~ n t ctive he re-
7] SO Low ity belo is and o espe t
Y oog =] ively). xity Xis a d 7, r 00 m, f
28w g 5 . spectively omple on axis : 6 an low 16 nse o
g : 3 s 5 3 1(I,)w terrain ES of the ;2};1}’0115 (Fl}glsélthough ble) The resggcoming
'U~‘5w a g - tio t S3.1). iabl
<3° 3B 8 o & sec aar ith dep iable, nd
=y =1 long Dang wit ntary var lope a
RS 3 o a r and . ased leme d was sed slop
g E < & Explore ce incre ive. (Supp t spee ilst increa: sponse.
R . s ndan atve. (5 current spe hils nce re ith
S S Q g 9 X X Abu € neg linic s T W bunda; ion wit
SEg &0 E | g N 3 becam baroc 25m itive a iation
ks = se .S n 0. 0si in assoc cur
g i é‘ é %- c . spon dance to R.Cll\: greater z[hzli'l an overalLﬁndanCe n aedicted to (;'CIOW
g g - bun ee i d a e pr o
2 g9 C o 5 3 abunc at sp resulted i ease e wer areas
S5y & g = & 2 2 egative dness rest d incr ndance we 8).In of the
< 3 g 3 51| = g 8 I n rugge edicte in abu (Fig. flanks
ggg¢g HEE @ floor Is pr aks 600 m hern long
9 S 5| 8 ) . sea ode ity. Pe d1 out s a
EEET Flels 5 g Ensemble mox e s 500 m, on the mllow oted by he
S g £ £ % T terra idges be 00-2500 m, sats dicte
g S B=I = 8 _a reate e ridg ~ 20 well a as pre
< S 3 E J Q%: E §n crests of ﬂ;exity belo:{vCanyonS as bundance w:
§= 2 5 e z, in comp r a
&5 2 g g g g g g5 terrain co d Dangaar axis, lowe
a5 5z % g d& £ A% ; Explorer afnthe Canyon)
w “7” ~
mo“% N - ﬁm(,;%.ﬁ ions o ig. 8).
g5 23 2| E £ o z % & section, le model (Fig nyons
o] :o £ b5 ® _‘% S 5 o' m% o::‘ % ensemb! tterns in ca
& g E 4 El g £ a © ion ing faunal pa d hydro-
g g S| & . si . n
2 o £ 3 g1 08 S 4. Discus iables influencing mplexity a unal pat-
§ 2 = E s e ental vari terrain C(.) fluencing fa ing phy-
o B = z 5 4.1. Environm, hat depth, 1 factors in incorporatin their
~os S E | g S -4 ified t nta that ves
= S| g . e . me d impro
e 8 3 & - - dentifi iron: trate Is imp:
D ° 1 V. ns dels
2273 ¢ A | & ) have tant e demo ive mo .
3 @ § 3 e impor d ictive es
2y EE N W imp an ctiv . drivi
3 < o & ERRS s o ics are ine canyons into predi ditions ith
g g 2l & s o dynam ubmarine data in ntal con: iches wit
g EZ ) s g 8 rns in s raphic vironme iety of n ity (Levin
5 2 2 g P te g n ri
5 8 9 2 = g s & oceano in these e ater va diversity
£ g S S1E|S 3 sical ce. ity in the ing a gre ss and
s 8 .
&1 g i § g % © Perform?n heterogene by providi cies richne
:3% g & g g e Spatlal s in fauna' reased Spe
E3 = 2 g ial pattern port inc ). is DO-
S =2 g g - & spatia ial to sup L. 201 hat is p
2% % - S|1E| & S otenti Leo et al, eity t al.,
g 2 8 e 21 &]3 2 the p 2010; De heterogen De Leo et .
L s B - 1. ? floor . ial het-
2 5] t al., . a 10; ial
g g § g 9 ¢ . mplexity roxy of Se~ et al,, 20 rates Spa,t t al.,
8E=Z S < 1. Terrain 601 xity is a p ity (Levin ons gene 1; Martin e 11:
2 5 . € ivers n 5 5
) g & 5 41 ain comp ith dive ity of cany t al., 201 etal., 20
82 5 G £ £ Terr related w i Complex(de Stigter e (Huvenne t exposure
= 98 3] 1) or ain : ition n
=8 < — itively c igh terr ics sitio urre: nce
89 g 5 2 g sitive high dynam ompo. and ¢ efere
g9 S = The iment dy tum ¢ 2014) apr 1
=8 < E © 2014). in sedim bstra al., show letal,
ity in su et S e .
E =g . < erogeneity t al., 2017),014; Stewart cluding CW1C ’2011; HOW1 2013;
SE5 8 Bl 2 2y 2011; Puig ed Davies, 2 r feeders, ln(De Mol eta . gstorf et 30‘1’7, van
S 2 g o : : . 5
:‘:d % g 8 %. = K Huvenne an 2015)' Fll,te omplexlty 1 2013; Rebri et al.; 2 raphic
o 5 N 9 5 . = ail et al-: d terrain ¢ - Gori et a s 2016, Fa nise topog: nter
T = 00 0 SO < (Ism increase 2011; ; t al., colo ncou
- = gl = S & 2 for such inc ne et al,, domenico e 2018). They ase food e 018). In
255 - g k| ] &« ; Huven ; Pier . al., incre L, 2
g Q &3 S| & . 11; 015; in et nd so o et al., ichness,
&= = > s 20 L, 2 ; Barga imes, a lacon ies ric
$ 2 o 3 T N tetal, 017; egimes, - Lo ecies m-
a8 o ¢ ¢ & Rober L, 2 rent r 2017; Ce, Sp: in co
g E i ‘. a Id et al, | current r tal, rrence ¢ terra
=@ g 5 & ! Be it loca bri e occu high icted for
s 8 .= 5 2 2 . den loit : Fa WC of hig cte
g . 2 g XD. 014; ility of C as redi
STEE o g R ighs to e L,2 lity o ith are les p
ST E RS o ] -9 g g hlg et al., babi . wit ial scale
o] § ; 8 E: » = z ‘E‘E & E'“ tes (Mohn reased pro ass()clatefl ilar spatial
R R g g= oy a tudy, inc ce were ver simi
iegga < |2 g ey our s d@mmzm@mwo
R 3 S v 3§ an
°=’NAU w | E : E&w‘s 1/D e an
55 ®9 % £ = g & ¥eE3 lexity (slop
o = NR= B < o S aw P
(=1 5 E - B} 5 = a»n
] o 2 ge ] <
5 8 & = o g =
SELEE I PR
= a "g = o g g
00 gy 55 3
£ £ o E 2 =
2%E§§§
R
[



Progress in Oceanography 184 (2020) 102338

T.R.R. Pearman, et al.

SINY Od ado[s
80°0 LT'0  T98 (%2 1) ;¥ [PV %92  ‘odofs ‘ssauyiioN ‘Aiso3ny ‘pdaq £0°0 LT'0  T98 (%T1) M [PV %Lz ‘Asodny ‘yida ‘SsoUyMON  INVD
SSoUYION SSOUYIION
1€°0 980 %0z ‘Aiso3ny ‘SINY D4 ‘@dofs ‘ydeq TE0 580 %81 “frso3ny ‘daq ‘adofs £
SINY 04 ssouiseq ‘Aiisodny
ST0 850 %ST  “Aiso3ny ‘ssauyiioN ‘2dofs ‘ydeq 0Z°0 ¥¥'0 %1 ‘qdaq ‘ado[s ‘ssuyiioN  1¥d
a1
adors ‘ssaulseqy ado[s
£2°0 8€'0 208 (%E€€) ;¥ [PV %8¢ ‘Aso3ny ‘SINY 04 ‘Wdeq ¥1°0 610 8S8 (%ST) ¥ [PV %61 ‘ssowsey ‘Aysodny ‘pdeg VD
adogs ‘Aisodny ssautloN ‘odors
[0]40) £8°0 %0% ‘ssauiseq ‘SINY Od ‘pdea 9€°0 £8°0 %9€ ‘Asodny ‘ssewiseq ‘yidaq £
adoys ‘ssamyseqy ssautioN ‘@dors
¥€0 €L°0 %S€ ‘Aso3ny ‘SINY 04 ‘Wdeq 1€°0 LLO %TE ‘Asodny ‘ssowisey ‘Yide@  1¥4
QduepUNQY
adofs ‘ssaujseq ‘ssouylIoN adojs ‘ssamseqy
9€°0 IS0 8SEL (%EY) ¥ PV %61 ‘SINY D4 “Aitso3ny ‘idaq 62°0 660 P8ET  (%EE) M [PV %8 Lc  ‘ssoutpioN ‘“Aisodny ‘pdeq VD
ssaujsey ‘9dos ‘ssauljlIioN ssamseq ‘@do[s
9t°0 £8°0 %LE ‘Ayiso3ny ‘SINY D ‘Wwdaa €v°0 L8°0 %Se  ‘ssauylioN ‘Asodny ‘ydeq £
ssouyseq ‘@do[s ‘SINY D9 adojs ‘ssamseqy
1€°0 8L°0 %6€ ‘ssauyIoN ‘Ayisodny ‘yideq LT°0 TL0 %le  ‘Aisodny ‘ssouyioN ‘Yide@  1¥d
ssauyary soads
(as91) (urery) (urexy) (s91) (urexr) (urexy)
- (py uoneraiiod A (py uoneraiiodn oIV paure[dxa adueLIRA soueyrodwr S[qerre) -d (py uoneraiiod A (py uoneraiiodn oIV paure[dxa adueLIBA souelrodwt S[qerie)  [9POIN

Ppaads JuaLmy druroIeq SIAY Surpnouf

paads Jua1md druroIeq SN Surpnpxy

*(zd PRISNIPY) SIUSIOLJR00 UOHER[21100 SUISN 19sBIep 1593 Y3 Uodn paseq passasse sem dueuriofrad SAIDIPaId “(DIV) 100 UOLISIID UOHBRULIONU] SIENY Y3 SINVD 10§ pue
(4 pasn{py) paure[dxs soueriea 3uisn J9seiep Sururen 3y} 03 3 [SPOU Y JO SULIS) UI PIssasse sem £oeImdde [9poIN *(%0€) uoniod Sururews: 3y JsureSe paisa) pue (%0/) BIep jo uonnied wopuer e Sulsn paurer} a1am
S[OpPOWI YDTYM UT 21nPpad01d UONEepITeA-sso1d & Sursn passasse sem adueurIojrad [OpojA ‘paads Juaimd drurpoIeq S ALY Surpnoxe pue (SINY DF) paads Juaimd drurpoIeq SN Y SUTpn[our sojqerrea ayeIdaqut Jeyl ((SINVD)
S[OPOJAl PATNIPPY [BISUSD puk (1Y) sIs2104 wopuey ‘(1Md) 291, uoIssaiday paisoogq) swyiriodre Surfopour 3y jo yoes uodn paseq aduepunge pue (/1) Xopul [ed01d1oa1 suosdurlg ‘ssautydlr saroads 10 synsax SUI[OpPoIN

LA CLAA

10



T.R.R. Pearman, et al.

Progress in Oceanography 184 (2020) 102338

10°0W 9°50'W
Probability of CWC occurrence < 50

9°40'W

48°40'N

48°30'N

48°20'N

50 - 60

*‘i‘. Y,
0°0'W
60 - 708 > 70 Depth Contour (m)

9°50'W 9°40'W

Fig. 5. Ensemble model predictive maps for probability of CWC occurrence across (A) the extent of the survey area and (B and C) insets zoomed in on canyon flanks.
(i): Predictive map based upon bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical oceanographic data
(R.M.S current speed of the baroclinic tide). Increased probability of CWCs is predicted on escarpments (1) and slopes of ridges (2) and lower probability is predicted
in areas of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the interfluves and the shelf) are less reliable because training datasets did
not include these environments. We have excluded them from our interpretation.

macrobenthic diversity in canyons off Hawaii (De Leo et al., 2014).
These predictions are supported by previous studies within the canyon
system that also predicted CWCs in areas of complex topography
(Robert et al., 2015) and observed CWCs and increased epibenthic di-
versity and abundance in association with steep walls and topographic
highs (Huvenne et al., 2011; Johnson et al., 2013; Davies et al., 2014;
Robert et al., 2015). Our models predicted asymmetric distributions
(where a higher prevalence of different taxa is predicted for one or the
other canyon flank) between the opposing flanks of both Dangaard and
Explorer Canyons. The flanks of the canyons differ in complexity, with
higher species richness and probability of CWCs predicted for the more
complex northern flanks. Unfortunately the spatial extent of predictive
mapping in previous studies does not enable further confirmation of the
asymmetric distributions predicted (Robert et al., 2015), but fauna are
predicted and observed in association with complex terrain which
would support our model predictions (Davies et al., 2014; Robert et al.,
2015). In other canyons, asymmetric distributions have been attributed
to the different geomorphology and hydrodynamics of canyon flanks,
with one side more subject to intense hydrodynamics and the other
dominated by depositional regimes (De Mol et al., 2011; Fabri et al.,
2017; Pierdomenico et al., 2017; Lo Iacono et al., 2018). Our data
suggest, more specifically, that it is the differences in terrain complexity
between flanks that result from these processes, together with variation
in baroclinic current speeds which generate the observed asymmetric
patterns in fauna distribution.

Slope acts as a proxy for substratum type, which is correlated with
faunal distributions. The steep slopes of Whittard Canyon are generally
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associated with hard substratum (Huvenne et al., 2011; Johnson et al.,
2013; Stewart et al., 2014; Robert et al., 2015, 2017; Carter et al.,
2018), which is positively correlated with sessile epibenthic diversity as
it provides a suitable surface for epifauna to adhere to (Baker et al.,
2012). In addition, steep slopes prevent sediment deposition and sub-
sequent smothering of epifauna in these environments affected by high
sedimentation rates (Howell et al., 2011; Baker et al., 2012). Steep
slopes may also provide refuge for fauna from anthropogenic dis-
turbance caused by fishing gear (Huvenne et al., 2011; Johnson et al.,
2013; Pierdomenico et al., 2016). A positive relationship between slope
and diversity has been observed previously from Whittard and other
canyons (Huvenne et al.,, 2011; Johnson et al., 2013; Robert et al.,
2015; van den Beld et al., 2017; Chauvet et al., 2018). In our study,
although highest diversity was recorded from vertical walls, some
sections of the walls supported low diversity. This observation suggests
that other processes and/or resources are acting together with terrain
complexity to influence faunal distributions in canyons.

4.1.2. Food supply and the internal tide

Variability in quality and amount of food supply influences canyon
faunal distributions (De Leo et al., 2010; McClain and Barry, 2010;
Cunha et al., 2011; Chauvet et al., 2018). Many benthic species within
canyons rely on surface derived POM as their main food supply (Cunha
et al., 2011; Miller et al., 2012). Generally, availability of surface de-
rived POM decreases with depth (Lutz et al., 2007). However, in active
canyons sediments can regularly be flushed to the deep. In parallel,
local hydrodynamics (including internal tides) can cause resuspension
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Fig. 6. Ensemble model predictive maps for species richness (A) across the extent of the survey area and (B and C) insets zoomed in on canyon flanks. (i): Predictive
map based upon bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical oceanographic data (R.M.S current
speed of the baroclinic tide). Increased species richness is predicted on escarpments (1) and the crests and south facing slopes of ridges (2) while lower species
richness is predicted along sections of the canyon axis and of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the interfluves and the
shelf) are less reliable because training datasets did not include these environments. We have excluded them from our interpretation.

of material and generate nepheloid layers at specific depths (Puig et al.,
2014; Wilson et al., 2015). Nepheloid layers are concentrations of
suspended material (including POM) that represent an important food
resource for deep-sea fauna (Demopoulos et al., 2017).

Within Whittard Canyon, nepheloid layers and centres of re-
suspension have been previously observed (1) where the MOW interacts
with areas of complex canyon topography resulting in baroclinic in-
ternal wave motion, causing turbulent mixing (Wilson et al., 2015), and
(2) associated with the internal tide at depths of 400-500 m,
900-1600 m and 1700-1800 m as well as where internal waves pro-
pagate at the boundary between the permanent thermocline 600-900 m
and upper boundary of the MOW (Wilson et al., 2015). In our study,
high probability of CWCs occurrence and peaks in species richness, 1/D
and abundance are predicted at depths of 800-1600 m, coinciding with
some of the above mentioned areas of resuspension and nepheloid layer
production (Figs. 5-8). Previous studies have also observed high di-
versity in association with nepheloid layers in Whittard Canyon
(Huvenne et al., 2011; Johnson et al., 2013; Robert et al., 2015). The
correlated spatial patterns between canyon fauna and nepheloid layer
distributions support the importance of food availability, in the form of
nepheloid layers, in influencing fauna distributions.

We found that internal tide dynamics correspond to an important
factor influencing faunal patterns in canyons, contributing to increased
spatial heterogeneity in environmental conditions. Faunal distributions
are influenced by the internal tide both directly and indirectly. The
internal tide directly influences fauna distributions by current speed
and indirectly via its role in the production and distribution of
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nepheloid layers.

Current speeds exceeding 0.15 m s~ ! can cause resuspension of
material (Thomsen and Gust, 2000), an important stage in nepheloid
layer production. In our study, increased probability of CWC occur-
rence, species richness, 1/D and abundance coincide with areas of
elevated current speed for the internal tide. CWC occurrences have been
linked to intensified bottom currents in a number of settings (Davies,
2009; Howell et al., 2011; Mohn et al., 2014; Rengstorf et al., 2013; van
Oevelen et al., 2016), including canyons (Bargain et al., 2018). How-
ever, our data show that above 0.25 m s~ ' species richness and
abundance are predicted to decrease. Species vary in their feeding
strategies and efficiency under different hydrodynamic regimes
(Jarnegren and Altin, 2006; van Oevelen et al., 2016). For filter feeders,
increased current flow increases food encounter rate up to a limit after
which the speed of the current exceeds that at which fauna can extract
particles and/or causes physical disturbance (Johnson et al., 2013;
Orejas et al., 2016). Our models predict low diversity on relatively flat
sections of the canyon floor that experience current speeds exceeding
(0.25 m s~ 1), located toward the canyon head of the Eastern branch,
and also where the adjoining Dangaard and Explorer canyons intersect
the main axis (Figs. 3, 6-8). These are areas expected to experience
higher disturbance regimes as mobile sandy sediments are routinely
reworked over the tidal cycle, forming an unsuitable substratum for
colonisation and abrasing the lower canyon walls. Additionally sto-
chastic/episodic turbidity currents and mud-rich sediment gravity flows
travel along the canyon’s axis representing major disturbance events
(Puig et al., 2014; Amaro et al., 2016). Johnson et al. (2013) also
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Fig. 7. Ensemble model predictive maps for Simpsons’ reciprocal index (1/D) (A) across the extent of the survey area and (B and C) insets zoomed in on canyon
flanks. (i): Predictive map based upon bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical oceanographic
data (R.M.S current speed of the baroclinic tide). Increased 1/D is predicted on escarpments (1) and the crests and south facing slopes of ridges (2) while lower 1/D is
predicted along sections of the canyon axis and of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the interfluves and the shelf) are less
reliable because training datasets did not include these environments. We have excluded them from our interpretation.

attributed low diversity toward the bottom of canyon walls to in-
creasing disturbance toward the canyon floor. It is therefore likely that
disturbance is restricting faunal patterns across the canyon floor, and
could explain the negative relationship of species richness and abun-
dance with high current speed.

As the internal tide wave propagates, it generates vertical dis-
placement of the isopycnal surfaces and associated nepheloid layers
(Hall et al., 2017). The periodic vertical movement of the nepheloid
layer in the water column replenishes food to canyon fauna over the
tidal cycle and has been linked to the distributions of antipatharians
and gorgonians in canyons of the Bay of Biscay (van den Beld et al.,
2017). In our study, CWCs are also associated with locations where the
internal tide is proposed to propagate (Wilson et al., 2015; Aslam et al.,
2018) and isopycnal displacements caused by the internal tide with
amplitudes measuring up to 80 m have been recorded within the
Eastern branch of Whittard Canyon (Hall et al., 2017). However, fine
scale studies investigating the influence of the vertical variations in
environmental conditions generated by the internal tide on fauna are
still lacking.

Internal waves, turbulent mixing and downslope displacement of
water can generally be associated with enhanced resuspension of POM
and can control the development of nepheloid layers (Allen and Durrieu
de Madron, 2009; Hall et al., 2017; Aslam et al., 2018). Examples of the
internal tide interacting with topography enhancing local hydro-
dynamics to form efficient food supply mechanisms to the benthos,
have previously been documented in the Baltimore Canyon
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(Demopoulos et al., 2017). In other settings the reliance of CWCs on
local current regimes to deliver food from the surface has been stressed
(Rengstorf et al., 2013; Mohn et al., 2014; Davies, 2009; Mienis et al.,
2009; Soetaert et al., 2016). It is probable that a similar process is oc-
curring in Whittard Canyon. Our models predict high diversity and
probability of CWCs in areas of complex terrain, especially steep slopes
that are critical and supercritical to the dominant semi-diurnal internal
tide and experience moderate internal tide current speeds. In their
study of nepheloid layers within Whittard Canyon, Wilson et al. (2015)
found the distribution of nepheloid layers was associated with the cri-
ticality of the slope to the dominant semi-diurnal internal tide. Inter-
mediate nepheloid layers were associated with critical conditions,
whilst supercritical conditions, that reflect wave energy back down
slope to suspend material, were linked to the formation of intermediate
nepheloid layers at greater depths. These correlated spatial patterns
between canyon fauna, nepheloid layer distributions and criticality
support the theory of the interactive processes of the internal tide (local
hydrodynamics) and topography in generating spatial heterogeneity in
food supply to which fauna respond.

4.2. Physical oceanography in canyon modelling

Despite hydrodynamics having been related to epibenthic fauna
distributions in canyons (Hargrave et al., 2004; Cunha et al., 2011;
Huvenne et al., 2011; Johnson et al., 2013; Fabri et al., 2017; Bargain
et al., 2018), there is a paucity of work which really quantifies this
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Fig. 8. Ensemble model predictive maps for Abundance (log + 1) (A) across the extent of the survey area and (B and C) insets zoomed in on canyon flanks. (i):
Predictive map based upon bathymetry and its derivatives. (ii): Predictive map based upon bathymetry and its derivatives with physical oceanographic data (R.M.S
current speed of the baroclinic tide). Highest abundance is predicted on the crests of ridges between 800 and 1600 m (2) and lower abundance is predicted along
sections of the canyon axis and of low terrain complexity (3). Model predictions beyond canyon branches (i.e. on the interfluves and the shelf) are less reliable
because training datasets did not include these environments. We have excluded them from our interpretation.

relationship as we have done here. Of the few studies that have in-
corporated hydrodynamics into predictive models, authors also found
current speed to be an important environmental predictor (Bargain
et al., 2018). In other studies the variable aspect, or its derivative
components eastness and northness, used as a proxy for current ex-
posure, have been identified as an important predictor variable (Lo
Tacono et al., 2018).

Our work has shown that by integrating high-resolution hydro-
dynamic data into predictive models we are able to capture greater
environmental heterogeneity beyond that solely represented by terrain
proxies (specifically areas of resuspension and nepheloid layer pro-
duction), and in turn improved the precision of the predicted dis-
tribution maps.

Future modelling efforts would benefit from incorporating physical
oceanography data. However, high-resolution hydrodynamic models
have only been developed for a subset of canyons and previous studies
that integrated oceanographic data at low resolutions found it difficult
to discriminate different environmental conditions (Davies et al., 2008;
Davies and Guinotte, 2011). Consequently, integrating oceanographic
data at an appropriate scale currently represents the main challenge of
high-resolution canyon mapping.

4.3. Model limitations

Field validations of deep-sea predictive models have demonstrated
that caution should be applied not to over-interpret results (Anderson
et al, 2016b). In particular, high spatial heterogeneity in
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environmental conditions and localised faunal distributions can be
difficult to model accurately (Anderson et al., 2016b). As such, model
results should be viewed as representing suitable locations rather than
actual distributions. The outputs from models are constrained by the
data inputs (Lecours et al., 2015; Miyamoto et al., 2017; Misiuk et al.,
2018; Porskamp et al., 2018), as demonstrated by our results which
differed depending upon the inclusion of hydrodynamics (Tables 3 and
4). Consequently, increased sample size, data resolution of the en-
vironmental variables and the inclusion of environmental variables that
capture variability in food availability could improve our model pre-
dictions by further characterising environmental gradients and resol-
ving the species — environment relationship of canyon fauna.

The dependence of model performance on data resolution re-
presents a limitation for deep-sea models (Lecours et al., 2015;
Miyamoto et al., 2017; Misiuk et al., 2018; Porskamp et al., 2018). In
our study the environmental variables temperature and salinity were
extracted and interpolated from the FOAMM model that outputted the
data at 7 km, which is too coarse a grid size to resolve the fine-scale
heterogeneity that influences species distributions in Whittard Canyon.
As a result these variables were not retained in the models. The inclu-
sion of finer resolution temperature and salinity data would enable
environmental heterogeneity in water mass characteristics to be better
characterised. Unfortunately, such fine-scale modelling outputs are
rarely available for canyons. Additionally, incorporating oceanographic
data metrics of higher temporal resolution that capture temporal
variability in addition to mean values, could further improve the pre-
dictive value of oceanographic variables, since species distributions are
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often limited by environmental extremes (Vasseur et al., 2014; Stuart-
Smith et al., 2017). Our results suggest that food supply is an important
factor influencing species distributions, as such, the inclusion of en-
vironmental variables that capture variability in food availability could
provide further insights and improve variance explained by models.
Lastly, increasing the number of groundtruthed samples, from across
the different canyon environments could reduce heterogeneity in the
dataset and enable more accurate modelling of species- environment
relationships, so improving prediction outside the originally sampled
area.

Despite the limitations of predictive modelling, as mentioned above,
and despite the limitations of our specific dataset in Whittard Canyon,
the results of this study still provide new insights in the functioning of
submarine canyons, and in the processes that drive benthic faunal
distributions in canyons.

5. Conclusion

In conclusion, our study has shown that the inclusion of high-re-
solution oceanographic data into predictive models of CWCs and epi-
benthic megafaunal biodiversity improves their performance. Our work
builds upon previous studies that solely used indirect variables to
capture information regarding physical oceanography and provides
further evidence within a statistical modelling framework for the role of
hydrodynamics, and principally the internal tide, in influencing faunal
patterns in canyons. Highest probability of CWCs and epibenthic di-
versity occur in areas of complex terrain that are subject to elevated
current speed. These areas coincide with areas of probable resuspension
and nepheloid layer distribution that represent enriched food resources
for epibenthic canyon fauna. Future predictive modelling efforts would
benefit from incorporating physical oceanography data at ecologically
meaningful resolutions, based upon prior multiscale analysis, helping to
ensure accurate habitat mapping of features of conservation interest,
which will facilitate effective spatial management.
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