Probiotics and potential applications for alternative poultry production systems
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ABSTRACT Concerns over animal welfare continue to
be a critical component of law and policies associated
with commercial food animal production. Social and mar-
ket pressures are the driving forces behind the legislation
and result in the change of poultry production manage-
ment systems. As a result, the movement toward cage-
free and aviary-based egg production systems has become
standard practices. Cage-based systems being replaced
by alternative methods that offer a suitable housing envi-
ronment to meet or exceed poultry welfare needs and
require different management, including the ban of

antibiotics in poultry diets. For broiler production, pas-
ture- raised and free-range management systems have
become more popular. However, challenges remain from
exposure to disease-causing organisms and foodborne
pathogens in these environments. Consequently, probiot-
ics can be supplemented in poultry diets as commercial
feed additives. The present review discusses the impacts
of these probiotics on the performance of alternative poul-
try production systems for improving food safety and
poultry health by mitigating pathogenic organisms and
improving egg and meat quality and production.
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INTRODUCTION

Commercial poultry production has evolved into a
vertically integrated animal industry characterized by
its size and production. Currently, to meet the rising
demands of the market for meat and eggs, the poultry
industry is dependent on the large scale production of
meat and egg-type chickens (Dittoe et al., 2020). While
conventionally raised broilers are confined to indoor
housing for their entire life cycle, public interest in
organic and locally grown food sources has led to the
pursuit of other management practices (Ricke and Roth-
rock, 2020). Therefore, a niche for alternative modes of
poultry and egg production systems has been created,
which has become more widely utilized in recent years.
These niches include alternative poultry husbandry
practices such as outdoor rearing of pasture flock
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broilers and cage-free layer aviaries (Mench et al., 2011;
Ricke, 2017; Shi et al., 2019; Ricke and Rothrock, 2020).
Although the terms free-range and pasture-raised are
often used interchangeably, this is not correct. Free-
range poultry are poultry reared in a system that allows
limited access to the outdoors and is regulated by the
United States Department of Agriculture (USDA).
Whereas pasture-raised, a term not regulated by the
USDA, involves birds reared in a system that allows for
at least 108 square feet of space outdoors and some sort
of shelter (Rothrock et al., 2019).

Antibiotics have been the most widely used additives
to improve feed conversion, growth rate, and bird
health, increasing both the productivity and profitabil-
ity in traditional commercial poultry production
(Gadde et al., 2017; Lourenco et al., 2019b). However,
antimicrobial-resistant bacterial strains originating from
animals (Randall et al., 2003; Ungemach et al., 2006;
Sweeney et al., 2018) have become an increasingly signif-
icant problem over the years, especially regarding trans-
mission via the food supply or direct animal contact
(Holmberg et al., 1984; Lanzas et al., 2010; Marshall and
Levy, 2011). Other potential food safety threats associ-
ated with antibiotic treatment in food animals include
an increase in allergic reactions and antibiotic treatment
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failures in humans (Bruce and Corpet, 1996;
Lhermie et al., 2016). As the poultry industry moves
increasingly to “No Antibiotics Ever” production sys-
tems, and the prophylactic use of antibiotics becomes
more restrictive, there is a new ecological niche in poul-
try flocks that pathogens can occupy (Casewell et al.,
2003). Therefore, increasing interest in the application
of antibiotic alternatives throughout the commercial
poultry industry has occurred. The reduction of antibi-
otic use has also resulted in the increasing popularity of
alternative poultry production systems that do not allow
for the use of antibiotics in their production practices
(Ricke and Rothrock, 2020). However, feed additives
that are acceptable to these alternative production sys-
tems are needed to retain health and limit foodborne
pathogens (Shi et al., 2019).

While there is an extensive microbial population resid-
ing in the gastrointestinal tract (GIT) of poultry
(Ding et al., 2017; Lourenco et al., 2019a; Feye et al.,
2020; Ricke et al., 2020), most of these bacteria are not
pathogenic organisms. However, in the presence of cer-
tain conditions, specific microorganisms within that
population can also behave as opportunistic pathogens.
In some foodborne pathogenic bacteria strains such as
Salmonella Typhimurium or Escherichia coli, there has
been significant development of antimicrobial resistance
in isolates from the poultry intestinal tract (Bager et al.,
1999; Fricke et al., 2009; Furtula et al., 2010;
Castellanos et al., 2017). These bacteria directly affect
human health through the consumption of improperly
washed or undercooked eggs or poultry products
(Kimura et al., 2004; USDA-FSIS, 2007).

In recent years, attention has been aimed at the indi-
rect contamination routes stemming from the use of
poultry litter as a fertilizer. Poultry litter, comprised of
feces, feed, wood chips, and other materials, is often
used on farms as a fertilizer for the soil and, in turn,
resulting in potentially contaminating vegetables, fruits,
or water if pathogens are present (Soupir et al., 2006;
Locatelli et al., 2017). In addition to contamination of
other food commodities and water through the soil,
there is concern over the widespread transfer of antibi-
otic resistance from the prophylactic use of antibiotics in
poultry diets. The resistance can occur very quickly,
especially if the recipient and donor bacteria are exposed
to an environment already containing antibiotic residues
(Williams-Nguyen et al., 2016; Castellanos et al., 2017;
Poole et al., 2017), and resistance genes bioaccumulate
in the human digestive system. Due to the public con-
cern of antibiotics use in poultry feed (KeepAntibiotics-
Working.com, 2003; Hao et al., 2014; Hoelzer et al.,
2017), banning antibiotics as growth promoters repre-
sent a significant challenge for poultry meat production.
The dilemma has led to the imperative to identify new
approaches or alternatives to remedy this problem
(Joerger, 2003; Gaggia et al., 2010; Marshall and
Levy, 2011; Lhermie et al., 2016; Lourenco et al., 2020;
Ricke et al., 2020). Subtherapeutic antibiotic use in
poultry feed has drawn global concerns for antibiotic
resistance in pathogens that are identified as human

health risks, resulting in the banning of antibiotics for
growth promotion in animal agriculture usage around
the world (Casewell et al., 2003; Van Boeckel et al.,
2015; Ricke et al., 2020).

Alternatives to antibiotics have been progressively
introduced into animal agriculture (Seal et al., 2013;
Gadde et al., 2017; Ricke et al., 2020). Antibiotics have
been replaced by products that proved to be viable in
alternative poultry production schemes and include
organic production, such as enzymes, organic and inor-
ganic acids, probiotics, prebiotics, synbiotics, herbs, and
essential oils (Callaway et al., 2013; Grilli et al., 2015;
Callaway et al., 2017; Shi et al., 2019). In the present
review, the focus will be on the use of “probiotics” as a
broad approach to reducing pathogens (including anti-
microbial-resistant organisms) in alternative poultry
production systems such as free-range and pasture-
raised systems.

In some ways, similar to conventional poultry produc-
tion, several factors can impact alternative production
systems, and the inclusion of the appropriate probiotic
may improve efficiency, reduce morbidity, reduce mor-
tality, reduce environmental pollution, and enhance
food safety. However, besides the shared impacts associ-
ated with the two systems, alternative production opera-
tions such as partial outdoor, cage-free, and pasture
flocks have additional influential factors unique to the
environments these birds are experiencing. When used
in alternative poultry systems, probiotics would be
expected to have similar favorable effects to antibiotics
used in conventional poultry production systems. After
egg hatching, their administration in feed has shown a
beneficial impact on improving animal health. This
review will illustrate the critical role of probiotics to
limit foodborne pathogen colonization, prevent some
common diseases that can harm free-range poultry flocks
and improve product characteristics of alternative poul-
try meat and eggs.

PROBIOTICS — GENERAL CONCEPTS AND
DEFINITIONS

The modern concept of “probiotics” was first devel-
oped by Ilya Metchnikoff, who noted that human popu-
lations in rural parts of Bulgaria experienced a higher
life expectancy than average, which was correlated with
drinking large quantities of fermented milk products
(Metchnikoff, 1907; Vasiljevic and Shah, 2008). Metch-
nikoff suggested a select type of microorganism existed
in the milk product that altered bacterial fermentation
in their intestines (Metchnikoff, 1907). The particular
bacteria or probiotic organism Metschnikoff based his
theory on was identified as Lactobacillus bulgaricus from
“podkvassa,” which was the culture starting agent in the
production of Bulgarian “kiselo mleko” (Grigoroff, 1905;
Vasiljevic and Shah, 2008).

The term “probiotic” resulted from an observed phe-
nomenon between cocultured organisms where one of
the microorganisms produced growth-promoting
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substances that stimulated the growth of other microor-
ganisms (Lilly and Stillwell, 1965; Tannock, 1997). The
definition of probiotic refers to a ‘live microbial feed sup-
plement which beneficially affects the host by improving
its intestinal microbial balance’ (Fuller, 1989); this being
a direct refinement of previous work through an empha-
sis on the “live cell” component of probiotics (Lilly and
Stillwell, 1965). In recent years, some of these live probi-
otic cultures have begun to be described by the general
term “Eubiotics,” which is related to the Greek word
“Eubiosis,” referring to an optimal microbiota balance in
the GIT (Miniello et al., 2017; Yasar et al., 2017).
Although probiotics have been employed in a broad
spectrum of usage to improve and maintain human
health (Suvarna and Boby, 2005; De Preter et al., 2011;
Wang et al., 2016), food animal agriculture has primar-
ily utilized probiotic supplementation (known as
“Direct-Fed Microbials”). In agriculture, probiotics are
used to increase feed efficiency, growth promotion
(Jin et al., 1997), and foodborne pathogen reduction
(Nahashon et al., 1994b; Krehbiel et al., 2003;
McAllister et al., 2011).

Historically, probiotic utilization in the poultry indus-
try has been viewed as an alternative to antibiotics that
promoted a “healthy” intestinal microbiota (Matéova
et al., 2008; Katoch et al., 2013; Vandana et al., 2013),
improved growth rates, limited animal diseases (Gor-
bach, 2000; Nava et al., 2005; Ghareeb et al., 2008;
Callaway et al., 2012), and inhibited foodborne patho-
gen growth (Patterson and Burkholder, 2003;
Lutful Kabir, 2009; Murate et al., 2015; Olnood et al.,
2015; Penha Filho et al., 2015; Upadhaya et al., 2016).
There are currently a vast number of probiotic products
in the marketplace being promoted to improve poultry
production efficiency, health, and safety. The hypotheti-
cal ideal characteristics of a probiotic have been
described in detail by Patterson and Burkholder (2003)
and will not be discussed further in the current review.

A broad range of fungi, protozoa, and bacteria have
been tested for probiotic capabilities and have been uti-
lized in field trials; however, only a select few have
reached industry level availability (Vasiljevic and
Shah, 2008). Much of the limitation in selecting probi-
otic cultures involves the requirement of being on the
“Generally Recognized as Safe” (GRAS) list to reduce
the regulatory hurdles encountered during commerciali-
zation. Modes of action of probiotics vary from culture
to culture yet fall into a relatively small number of cate-
gories (Khan and Naz, 2013; Buntyn et al. et al., 2016).
Among the mechanisms suggested include production of
short chain fatty acids (SCFA), bacteriocins and other
inhibitory ~ substances by  probiotic  organisms
(Joerger, 2003; Patterson and Burkholder, 2003). Probi-
otic competition for adhesion sites on the GIT epithe-
lium that prevents physical binding by the pathogen can
be a factor as well (Nurmi et al, 1992; Wray and
Davies, 2000, Schneitz, 2005). In addition, stimulation
of the host immune system may also play a role
(Kogut and Klasing, 2009; Kogut and Swaggerty, 2011).
However, given the complexity of the microbial

consortia in the poultry GIT, the mode of action of pro-
biotics is the most likely a combinatorial effect of all the
previously mentioned modes of actions as well as other
less defined mechansism, rather than a single action.
Thus, most of the benefits of probiotic feeding (e.g.,
improved growth efficiency and reduced foodborne
pathogens) may be the result of a complex array of
mechanisms.

IMPACT OF PROBIOTICS ON POULTRY
PRODUCTION

Probiotics are often fed to poultry to potentially
increase feed intake and nutrient retention
(Ghareeb et al., 2012). Many have proven to be consis-
tently beneficial by eliciting positive impacts on GIT
morphology, microbial populations, nutrient absorption,
intestinal barrier function, antioxidative capacity, apo-
ptosis, and immune responses, ultimately promoting
GIT health and broiler production performance
(Callaway et al., 2011; Rodjan et al., 2018; He et al.,
2019; Wu et al., 2019). The efficacy of probiotics in poul-
try, and food animals, in general, is often based on feed
intake (FI), body weight gain (BWG), feed conversion
rate (FCR)), and the health or welfare status of the ani-
mals by reducing the frequency of morbidity and mortal-
ity during certain critical phases of production, such as
dietary stress (change of diet, rations rich in concen-
trates) and health stress (e.g., animal density and other
factors) (Yeo and Kim, 1997; Callaway et al., 2011;
Katoch et al., 2013; Vandana et al., 2013;
Palamidi et al.,, 2016; Yazhini et al., 2018; Vase-
Khavari et al., 2019).

Treatment with probiotics has resulted in an increase
in serum protein, albumen, and a reduction of total
serum cholesterol and triglycerides in broilers
(Yazhini et al., 2018). Following probiotic administra-
tion to broilers, the reduction of cholesterol and fat con-
tent in the breast and thigh meat was observed
(Hossain et al., 2012). Additional studies report
increased fatty acids in broiler meat and higher levels of
vitamin E and other nutrients (Trembecka et al., 2016).
Access to pasture or insects may also contribute to the
organoleptic quality of the product, which could impact
market acceptability for pasture reared and free-range
poultry products (Ponte et al., 2008; Hammershgj and
Johansen, 2016; Ruhnke et al., 2018). For example, Al-
Qazzaz et al. (2016) reported improved FCR, egg pro-
duction, egg weight, shell thickness, shell weight, egg
yolk color, fertility, and egg mass when commercial
layers were fed black soldier fly larvae in commercial
diets (Al-Qazzaz et al., 2016).

Supplementation of free-range and pasture-raised
flock diets with probiotics has the potential to not only
improve production and organoleptic quality of poultry
and poultry products, but reduce the environmental
burden of rearing poultry. As such, retaining dietary
nutrients through probiotic supplementation represents
a potential opportunity to improve growth performance
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and reduce the environmental (pollutant) burden from
poultry production. One major concern of agriculture
production, such as poultry production, is its contribu-
tion to the build of phosphorus, potassium, and nitrogen
in the soil and contribution to eutrophication of water-
ways (Dittoe et al., 2018). The primary reason poultry
production contributes to phosphorus leaching is the
loss of available phosphorus by phytate. Phytate is a
phytochemical that binds phosphorous, making it
unavailable to the animal; thus, there is significant inter-
est in using the microbial enzyme phytase to retain
available  phosphorus  (Perney et al., 1993;
Nahashon et al., 1994a; Kim et al., 2007). The supple-
mentation of probiotics in poultry diets has demon-
strated a phytate degradation mechanism. Through the
inclusion of recombinant Lactobacillus cultures in poul-
try diets, broilers experienced improved weight gain
resulting in reduced production cost and environmental
impacts (Askelson et al., 2014). In some cases, the use of
probiotic additives has lowered the quantity of nitrogen
in waste effluent, which potentially represents a gain in
feed efficiency and reduced nitrogen requirements in diet
formulations, resulting in a reduction of leached nitrogen
on the farm and the surrounding environment
(Rotz, 2004; Applegate et al., 2010).

Not only do probiotics have the potential to reduce
nutrient requirements by enhancing nitrogen and phos-
phorus utilization, but some probiotics have also demon-
strated  significant immunomodulatory  potential
(Apata, 2008; Brisbin et al., 2011; Kogut and Swagg-
erty, 2011; Cox and Dalloul, 2015; Palamidi et al.,
2016). Protection against pathogens and facilitating
digestion and nutrient utilization may be resolved by
modulating the immune response (Rinttila and Apaja-
lahti, 2013). These benefits can be accomplished by
enhancing the innate and acquired immunity of poultry
(Swaggerty et al., 2019). Specifically, Swaggerty and col-
leagues (2019) suggest that influencing the innate immu-
nity through modulating the proliferation of
macrophages, heterophils, and Bl-type lymphocytes is
more advantageous than stimulating the acquired
immunity. However, more research is needed to delin-
eate such differences.

Previously, the weekly oral supplementation of lac-
tic acid bacteria (LAB), such as Lactobacillus aci-
dophilus, Lactobacillus reuteri, and Lactobacillus
salivarius, in commercial broiler chicks resulted in
improved antibody- and cell-mediated immunity
(Brisbin et al., 2011). Brisbin et al. (2011) demon-
strated that after immunizing birds with sheep red
blood cells (SRBC), keyhole limpet hemocyanin
(KLH), Newcastle disease virus vaccine, and infec-
tious bursal disease virus vaccine at 14 and 21 d of
age, the supplementation of L. reuteri was able to
modulate the chicken immune system, whereas, L. aci-
dophilus and L. salivarius were not. Overall,
Brisbin et al. (2011) concluded that the oral treatment
of broilers with LAB could stimulate the immune sys-
tem, but they may vary in their ability to modulate
the immune response.

Probiotics have demonstrated beneficial effects on the
immune system to control inflammation in poultry by
interacting with the intestinal epithelial and immune
cells. In order to select strains for potential use as probi-
otics, the immunomodulatory properties of LAB were
tested in vitro to determine their ability to survive acidic
conditions (pH 2.5) and bile salts (0.1 to 1.0%), reduce 6
pathogens, and adhere to Caco-2 cells (Feng et al.,
2016). Subsequently, Feng and colleagues selected six
LAB strains from the in vitro screening. Three of those
strains (Lactobacillus plantarum PZO01, L. salivarius
JM32, and Pediococcus acidilactici JH231) reduced the
levels of lipopolysaccharide-induced TNF-a factor
(LITAF), IL-18, IL-6, and IL-12 and increased IL-10 in
the serum in vivo during a Salmonella challenge in com-
mercial broilers. In addition, the influence of 4 probiotics
(Lactobacillus, Bifidobacterium, Enterococcus, and Ped-
iococcus strains) in broilers was evaluated by
Mountzouris et al. (2007). Conventionally-reared
broilers received a corn-soybean basal diet with or with-
out a probiotic administered in the feed or water supply.
Those broilers fed diets supplemented with the probiotic
cocktail in the feed or water exhibited significantly
higher specific activities of two glycolytic enzymes asso-
ciated with gut modulation and immune stimulation,
a-galactosidase and B-galactosidase, compared with
those fed the control and antibiotic supplemented diets.

In summary, much of these benefits involve a hypoth-
esized modification of the intestinal ecosystem, which
often has yielded widely variable results among studies.
Much of the impact is dependent upon several parame-
ters including the strains of microorganisms used, probi-
otic concentrations in the feed, the interaction of
probiotics with individual components of the ration,
interactions with the indigenous microbiota, bird age,
and the nutritional and health status of the birds
(Cui et al., 2017).

ZOOTECHNICAL PROBIOTICS, FOOD
SAFETY, AND POULTRY HEALTH

Probiotics exert antibacterial activities through the
direct competitive opposition and indirect exclusion
(Nurmi et al., 1992; Kizerwetter-Swida and Binek, 2009;
Callaway et al., 2017) against various poultry foodborne
pathogens such as Salmonella and Campylobacter spp.
(Line et al., 1998; Siemon et al., 2007; Willis and
Reid, 2008; Higgins et al., 2010; Knap et al., 2011;
Mortada et al., 2020). Commercial probiotics such as
Lavipan (Lactococcus lactis, Carnobacterium divergens,
Lactobacillus casei and plantarum, and Saccharomyces
cerevisiae) have been shown to reduce Campylobacter
spp. invasion of the GIT under commercial field condi-
tions resulting in the mitigation of Campylobacter popu-
lation in the GIT and the resulting carcasses after
processing (Smialek et al., 2018). The supplementation
of Lavipan in broiler diets demonstrated an increase in
body weight gain and a decrease in coliform proliferation
of broilers (Smialek et al., 2018). In addition, the rate of
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lactobacilli growth in the crop increased at the beginning
of the first day of administration (Smialck et al., 2018).
However, no significant decrease in the Campylobacter
populations was observed in the cecum (Smialek et al.,
2018), suggesting this probiotic activity occurs primarily
in the small intestine (Pascual et al., 1999) or was unable
to reach the hindgut. Broilers orally gavaged with L. sal-
warius exhibited effective prevention of Campylobacter
Jjejuni colonization in broiler intestines (Saint-Cyr et al.,
2017). Probiotics are also active against less frequent
foodborne pathogens that affect poultry health and
poultry products, such as FE. coli (Chang and
Chen, 2000; La Ragione et al., 2001; La Ragione et al.,
2004), Staphylococcus aureus (El—Kholy et al., 2014),
Yersinia enterocolitica (Bujalance et al., 2014), Clos-
tridium perfringens (Zhou et al., 2016; Li et al., 2018;
Ramlucken et al., 2020), and Listeria monocytogenes
(Olnood et al., 2015).

Necrotic enteritis (NE) caused by C. perfringens is a
poultry production disease that can lead to morbidity
and mortality in chickens (Sokale et al., 2019). The
onset of NE has been successfully reduced in poultry by
numerous probiotics (La Ragione et al., 2004;
Taheri et al., 2010; Olnood et al., 2015; Bortoluzzi et al.,
2019; Sokale et al., 2019). Several bacterial strains
(Bacillus subtilis and licheniformis, Enterococcus fae-
cium, Lactobacillus acidophilus, Butyricicoccus pullicae-
corum) have been used as probiotics against subclinical
necrotic enteritis (SNE) (Eeckhaut et al., 2016; Li et al.,
2018; Sokale et al., 2019; Wu et al., 2019). If populations
of C. perfringens can be kept low in the GIT by competi-
tive exclusion, poultry well-being and production can be
improved.

Aflatoxin, a family of toxins produced from certain
molds (Aspergillus flavus and A, parasiticus), poses a
significant risk to poultry production because of the
direct toxicity which impacts bird mortality and mor-
bidity throughout the production cycle (Otim et al.,
2005; Hussain et al., 2010; Tarus et al., 2019). Because
of the sporadic nature of aflatoxin production and accu-
mulation in the diet of poultry, it is difficult to predict
and detect in many cases (Maciorowski et al., 2007).
However, several probiotics have demonstrated direct
antiaflatoxin impact in several food animal species
(Baines et al., 2013; Intanoo et al., 2018), including
broilers and hens (Ma et al., 2012; Motawe et al., 2014).

PROBIOTICS FOR PASTURE FLOCK
BROILERS

Minimal research has been published on the effect of
probiotics on pasture flock broilers. In general, it has
been proven that probiotics have a positive impact on
different production parameters when administered as
feed additives to broilers over the entire rearing period
(Rowghani et al., 2007; Nunes et al, 2012).
Pelicia et al. (2004) evaluated the effects of a no treat-
ment control (1) and three commercial treatments: the
combined supplementation of the probiotic “Colostrum

avus” (Enterococcus sp.) of bacterial origin and the pre-
biotic “Simbiotico plus”(a mannan oligosaccharide from
the cell wall of Saccharomyces cerevisiae) (2); the combi-
nation of a probiotic and prebiotic of yeast origin, Levu-
cell SB 20 (cell wall components and live cells of
Saccharomyces cerevisiae) (3); and a mixture of 2 and 3
(4). The treatments were tested for efficacy based on the
performance, development of the digestive system, car-
cass yield, and meat quality of a free-range strain of
broiler chickens (ISA S757-N Label Rouge). A total of
560 birds were reared in commercial production until 35
d of age, where they were provided limited access to the
outdoors. Pelicia et al. (2004) observed that birds supple-
mented with dietary treatment 2 had reduced mortality
up to 35 d of age compared to the control birds, likely
due to probiotic bacteria GIT colonization, which con-
ferred higher resistance in the birds. Significant weight
gain from 64 to 77 and 64 to 84 d of age was observed in
birds fed treatment 2 compared to the control birds.
Moreover, there were significant differences among treat-
ments for carcass yield. Birds supplemented with treat-
ment 2 and 3 exhibited higher total carcass yield than
control birds, but there was no effect of treatment on the
yields of the breast, breast meat, leg, leg meat, wings,
and back. Pelicia et al. (2004) also did not detect perfor-
mance differences among treatments; however, in the
later phases, the addition of treatment 2, probiotic and
prebiotic from bacterial origin, to poultry diets increased
weight gain compared to the control group. The addition
of probiotics and prebiotics of different origins did not
affect the digestive tract and affiliated organs (liver, pro-
ventriculus, gizzard, pancreas, duodenum, jejunum,
ileum, and cecum).

The efficacy of utilizing prebiotics and probiotics
(85% of mannooligosaccharides and 10° CFU of Entero-
coccus spp. per gram of product) was evaluated on Sal-
monella incidence in the carcasses of a free-range strain
of broilers (Naked Neck Label Rouge; Takahashi et al.,
2005). During trial two of the study, at 35 d of age a
total of 128 male chicks were given access to outdoor
paddocks (3 m?/bird). The GIT morphology was not
affected by the addition of probiotics and prebiotics;
however, the incorporation of probiotics and prebiotics
in infected flocks with Salmonella Enteritidis signifi-
cantly reduced subsequent carcass contamination with
Salmonella spp. During trial one of the study, birds
were supplied diets containing probiotics and prebiotics
and either confined indoors or reared in a free-range
system. Those supplemented with the diets containing
prebiotics and probiotics and the confined birds showed
better performance, carcass yield, and meat quality
than the birds of the other treatments. Birds fed diets
supplemented with probiotics and prebiotics also
showed higher body weight and weight gain, whereas
feed intake was increased in the control birds. Birds fed
the diet containing probiotics and prebiotics had
greater height and length of breast fillets.
Pelicia et al. (2004) also reported that meat quality
characteristics were similar between a free-range strain
of broiler chickens fed diets with different additives
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(probiotics, prebiotics, and antibiotics) and given lim-
ited access to the outdoors at 35 d of age.

Free range chickens may also be a viable source of pro-
biotics for commercial poultry production. For example,
Neveling et al. (2020) evaluated probiotic strains (Lacto-
bacillus gallinarum, L. johnsonii, L. salivarius, L. crisp-
atus, Enterococcus faecalis, and Bacillus
amyloliquefaciens), isolated from the GIT of 25 healthy
free-range broilers (crop, proventriculus, ventriculus,
duodenum, small intestine, cecum, and large intestine)
from Hermanus, Graafwater, Fisantekraal and Grabouw
in the Western Cape of South Africa. They demon-
strated the in vitro tolerance of the probiotic candidates
toward simulated GIT conditions such as acidic condi-
tions and bile salts. They produced hetero-exopolysac-
charides, which aided their vitality in the GIT harsh
conditions, and could be utilized for the formation of
biofilms. Bacillus amyloliquefaciens produced extracellu-
lar amylase and antimicrobial lipopeptides. Amylase, an
enzyme that increases starch degradation, has the
potential to improve poultry growth performance. L.
salivarus, L. crispatus, and L. johnsonii produced
hydrogen peroxide, which has the ability to inhibit the
colonization of oxidative-sensitive bacteria. B. amyloli-
quefaciens and FE. faecalis were capable of producing
phytase, an enzyme that can increase nutrient availabil-
ity in feed, subsequently improving the growth perfor-
mance of poultry. In addition, L. crispatus and F.
faecalis used in the study produced the bile salt hydro-
lase, which indirectly leads to a lowering of cholesterol
effects. Each strain possessed specific probiotic proper-
ties, and the combination of these strains, when pro-
vided to commercially reared broilers, exhibited the best
protection against pathogens (Neveling et al., 2020).

The supplementation of probiotics isolated from the
intestines of free-range chickens also has the potential to
improve the meat composition and health of the birds
by modulating the GIT microbiota (Aziz et al., 2020).
For example, MiaClost, a commercial poultry water sup-
plement consists of two probiotic bacteria, E. faecium
and B. subtilis spores that were originally isolated from
the GIT of free-range chickens and supplemented at a
rate of 100 g per 1,000 L. (MTAVIT GmbH, Essen (Old-
enburg), Germany). In fact, the supplementation of the
probiotic MiaClost to the drinking water of commercial
broiler chicks (no access to outdoors) led to a decrease in
the percentage of moisture and an increase in the pro-
portion of protein in the breast and thigh meat at 42 d
of age (Aziz et al., 2020). Additionally, there was a sig-
nificant effect on the fat and ash of the two cuts of meat
when birds were supplemented with MiaClost. However,
there was no influence on the pH of breast and thigh
meat. The probiotic supplementation of 0.160 g of Mia-
Clost per liter of drinking water did contribute to a sig-
nificant increase in water holding capacity in the breast.
In contrast, the supplementation of 0.175 g of MiaClost
per liter of drinking water resulted in a decrease in the
water holding capacity in the breast (Aziz et al., 2020).
In addition to improving meat quality parameters, the
supplementation of MiaClost in the drinking water

demonstrated the potential to improve growth parame-
ters as well (Aziz et al., 2020). Aziz et al. (2020) reported
that the supplementation of 0.160, 0.175, and 0.190 g/L
to commercially reared broilers (no access to the out-
doors) improved the feed intake, body weight gain, feed
conversation ratio, and the intestinal morphology. Dur-
ing the performance study, there was no difference
between the supplementation of 0.175 and 0.190 g/L,
whereas the supplementation of 0.160 g/L was optimal
to increase the meat quality but the higher doses
resulted in decreased meat quality (Aziz et al., 2020).
Therefore, the optimal concentration may be 0.160 g/L
of MiaClost although the producer of the product sug-
gests a dosage of 0.1 g/L. Overall based on the outcomes
of these studies, it appears that the responses to probi-
otic supplementation in free-range broilers are not incon-
sistent. In general, probiotics may be more effective in
broilers experiencing stress, possibly due to the presence
of unfavorable organisms, extremes in ambient tempera-
ture, diseases, crowding, and poor management, which
can occur in both conventional and alternative produc-
tion systems. In addition, free-range chickens may har-
bor probiotic candidates that have utility in
conventional poultry production.

PROBIOTICS FOR PASTURE, CAGE-FREE,
AND ORGANIC LAYING HENS

Another potential niche for probiotics is within the
pasture, cage-free, and organic laying hens. Over the
past few years, organic poultry production has increased
by 23% from 2015 to 2016 with U.S. farms and ranches
selling over $7.6 billion in certified organic commodities
in 2016 (US Egg and Poultry, 2020). In addition, eggs
were the second highest certified organic commodity
bringing in over 816 million dollars in 2016 an 11%
increase from 2015 (US Egg and Poultry, 2020). Cur-
rently, 5.8% (19.4 million) of layer hens are used for
organic egg production, 17.8% (60 million) of layer hens
are used for cage-free egg production, and 76.4 % (257.1
million) of layer hens are used for conventional egg pro-
duction (United Egg Producers, 2020). On average,
287.1 eggs per capita were consumed in the US in the
year 2019, making eggs the most consumed animal pro-
tein within the US (US Egg and Poultry, 2020).

Eggs are likely so popular among consumers of the U.
S. and other countries as they are one of the most cost-
effective sources of animal proteins and lipids and can be
utilized in a variety of food products (United Egg Pro-
ducers, 2020). Of the 275 million eggs produced in 2019,
60.1 % (165.5 million cases) eggs were sold as retail shell
eggs, 30.1% (82.9 million cases) were used for further
processed foods, 7% (19.3 million cases) were used in
food service, and the remaining 2.8% (7.6 million cases)
were exported out of the U.S. (United Egg Producers,
2020). One major interest of egg production is the nutri-
tional aspect of eggs, such as antioxidant components
(Lu and Baker, 1986). Many of the antioxidant compo-
nents of eggs are within the egg yolk, mainly phosvitin
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which chelate Fe (IIT) ions (Lu and Baker., 1986). Phos-
vitin also provides protection against the formation of
iron-catalyzed hydroxyl radicals (Lu and Baker., 1986).
These antioxidants could be used to prevent colorectal
cancer since iron-modulated oxidative stress is impli-
cated in this pathology. Adding to consumers’ market
preferences, parameters in the shell, such as color and
strength, are also of value (Zakowska-Biemans and
Tekien, 2017).

With the interest in pasture-raised poultry, there is a
potential for egg characteristics to improve as poultry
that have access to high-quality pastures could poten-
tially produce eggs that contain more beneficial qualities
than those without access to pastures. According to
Karsten et al. (2010), eggs of pasture-raised hens are dis-
tinguishable from the eggs of sister hens fed only a com-
mercial mash diet in conventional cages for 6 wk. Eggs
of the hens consuming grasses in the pasture system had
23% more vitamin E than eggs of hens grazed clover.
Overall, eggs produced from pastured hens contained
twice as much vitamin E and long-chain omega-3 fats, a
2.5-fold increase in total omega-3 fatty acids, and less
than half the ratio of omega-6:omega-3 fatty acids in
comparison with the eggs of the caged hens
(Karsten et al., 2010). Although the amount of vitamin
A per egg did not differ, vitamin A accumulation was
38% higher in the pastured hens’ eggs than in the caged
hens’ eggs (Kartsen et al., 2010). However, pastured
hens may have lower body weight and egg production
than caged hens unless supplemented sufficiently to
meet their dietary energy and crude protein needs
(Kasten et al., 2010).

There is also a precedent with other avians such as
quail to support the benefits of probiotics on egg produc-
tion. For example, Manafi et al. (2016) assessed the per-
formance and GIT health of Japanese quails (Coturniz
Coturniz japonica) when provided diets supplemented
with B. subtilis. It was demonstrated that supplement-
ing the Japanese quail diets with probiotics such as B.
subtilis improved egg production and egg weight
(Manafi et al., 2016). In addition, GIT crypt depth was
reduced, villi height and villi to crypt ratio were
increased, and Salmonella, F. coli, and total coliforms
were reduced (Manafi et al., 2016).

Other probiotics, such as LAB, have also been shown
to improve layer performance. Some of this improve-
ment could be related to improved GIT health. For
example, studies have shown that probiotics may pre-
vent reproductive tract lesions within poultry, poten-
tially increasing layer performance (Shini et al., 2013).
These improvements could also be evident from more
efficient nutritional responses of layers.
Lokapirnasari et al. (2019) determined that the use of
probiotics, Bifidobacterium spp. and L. casei, could
improve the growth performance and egg production in
organic laying hens. Probiotic administration (0.5%
Bifidobacterium spp. + 0.25% L. casei) was imple-
mented at intervals of 1, 2, 3, and 4 wk in 180 laying
hens (Lohmann) at 30 wk of age. Probiotic supplementa-
tion in the diets during wk 1 and 2 exhibited the lowest

feed intake, with the highest egg weight in the 1st wk of
administration. The 0.5% Bifidobacterium spp. + 0.25%
L. casei in the 2nd, 3rd, and 4th wk revealed no detect-
able differences compared to the use of 0.1% antibiotic
growth promoters (AGP) in the 2nd and 3rd wk
(Lokapirnasari et al., 2019). The results showed that
supplementing 0.5% Bifidobacterium spp. + 0.25% L.
casei and 0.1% AGP yielded relatively similar results.
The lowest FCR was observed for the treatment of 0.5%
Bifidobacterium spp. + 0.25% L. caseiused for 1 to 4 wk
(Lokapirnasari et al., 2019). The provision of 0.5% Bifi-
dobacterium spp. + 0.25% L. casei for 1 to 4 wk yielded
FCR results significantly different from the administra-
tion of 0.1% AGP for wk 1, 2, 3, and 4
(Lokapirnasari et al., 2019). High FCR results were
found in controls when AGP and probiotics were not
provided. The low FCR was caused by administering
probiotics that can reduce feed consumption, while egg
production remained high. Lactobacillus is one of the
dominant groups of microorganisms located in the duo-
denum in chickens and has been associated with better
feed efficiency (Bjerrum et al., 2006; Wang et al., 2014).
This improvement in feed efficiency and reduction in
FCR by additional probiotics could be related to the
enhancement of the metabolism of digestion processes
and the utilization of nutrients due to its supplementa-
tion (Lokapirnasari et al., 2019).

Incorporating probiotics as feed additives may also
increase nutrient absorption due to an improved intesti-
nal mucosal structure. Lokapirnasari et al. (2019) deter-
mined that the supplementation of LAB probiotics in
diets has the potential to improve the mucosal structure
in the GIT, thereby suppressing pathogenic bacteria
growth, resulting in improved egg production. An opti-
mally functioning GIT can help improve the metabolic
process and absorption of nutrients needed by the host
(Lokapirnasari et al., 2019); however, this may depend
on the type of probiotic. For example, two different pro-
biotics (L. acidophilus or B. subtilis) were compared in
organic laying hens fed corn-soybean cake-based diets
(Forte et al., 2016). Subgroups of hens at 18 wk, 5 mo,
and 7 mo were euthanized, and small intestinal duode-
num sections were subsequently removed for morpholog-
ical and morphometric examination. Ileal and cecal
contents were enumerated for E. coli, coliforms, Entero-
cocci, Staphylococci, Clostridium spp., total anaerobes,
Bifidobacterium, and lactobacilli. Duodenal morphologi-
cal and morphometric responses did not appear to be
influenced by either probiotic, but microbiological differ-
ences did occur (Forte et al., 2016). In general, L. aci-
dophilus  probiotic-fed hens yielded the lowest
populations of E. coli, coliforms, Staphylococci, while
both probiotics reduced Clostridium spp. Both probiot-
ics increased lactobacilli and Bifidobacterium. Interest-
ingly, Bifidobacterium were less predominant in the
ileum of older birds fed L. acidophilus than birds receiv-
ing Bacillus. However, Bifidobacterium were higher in
the cecum of older birds fed L. acidophilus than birds
fed the Bacillus probiotic (Forte et al., 2016). These
results suggest that some competition may occur
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between Bifidobacterium and lactobacilli in the ileum,
potentially shifting certain LAB groups into the cecum.
However, total anaerobes were minimally impacted by
either probiotic (Forte et al., 2016). Further studies
involving complete microbiome characterization of both
sections of the layer hen GIT along with lactic and
SCFA quantitation may reveal whether this is occur-
ring. It is also possible that specific Lactobacillus spp.
could vary depending upon the region and locations in
the GIT (Adhikari and Kwon, 2017). Therefore, in addi-
tion to microbiome characterization, specific detection
assays for each probiotic strain are warranted to better
understand the establishment of each respective probi-
otic isolate and its respective colonization site.

INFLUENCE OF PASTURE FORAGES

The ability of probiotics to influence birds’ responses
in alternative poultry production systems can be
affected by other factors related to how these birds are
raised, such as the availability of pastures for potential
grazing (Sossidou et al., 2015). Hypocholesterolemic and
anticarcinogenic compounds present in forage can lead
to improved meat quality (Angelovicova et al., 2013),
but also have the potential to negatively impact con-
sumer sensory perceptions. Forages such as alfalfa natu-
rally generate molecules, including triterpenoid and
steroidal glycosides, referred to collectively as saponins
(Rao and Gurfinkel, 2000; Francis et al., 2002). These
are bioactive compounds possessing hypocholesterole-
mic, anticarcinogenic, and anti-inflammatory properties,
along with antioxidant activities (Rao and Gurfin-
kel, 2000; Francis et al., 2002). Researchers demon-
strated that the addition of polysavone, a natural
extract from alfalfa, to broiler diets has the potential to
increase the serum anti-Newcastle disease virus hemag-
glutination inhibition antibody titer and lymphocyte
proliferation (Dong et al., 2007). In addition, polysavone
supplementation decreased abdominal fat deposition
and enhanced immune parameters with no negative
impact on Arbor Acre broilers (Beijing Huadu Broiler
Co., Beijing, China) (Dong et al., 2007). However, poly-
savone has been shown to reduce growth performance,
reduce abdominal fat, and increase breast and drumstick
meat yield in organic broilers when housed in an indoor
pen with access to a grass paddock compared to the con-
trol birds (Castellini et al., 2002).

Within the responses of birds to these forage sources
and potential metabolites, it would be interesting to
know if probiotics could play a role in enhancing benefi-
cial effects of individual plant metabolites and/or coun-
tering the more negative aspects of some metabolites via
fermentation activities that detoxify certain chemical
moieties. Thus, probiotic benefits could be translated to
further improvements in total cholesterol, triglyceride
levels, and immunological parameters (Jin et al., 1998).
Dietary adaptation in combination woth probiotics may
also offer the potential to improve poultry meat flavor in
pasture-raised birds. However, little is known about how

antimicrobials and probiotics affect the taste, odor/fla-
vor, appearance, and texture of poultry products
(Lutful Kabir, 2009). More research on the influence of
pasture foraging and probiotics on the sensory qualities
of free-range poultry products is needed to design opti-
mal nutritional management strategies for maximizing
any benefits attributable to these factors. Since produc-
tion parameters are somewhat unique with pasture-flock
birds as well as potential breed differences other sensory
and meat properties may respond in other ways not typi-
cally associated with conventional broilers.

FUTURE DIRECTIONS

As alternative poultry production practices and their
corresponding markets develop accompanied by expan-
sion in consumer demand for more of these alternative
poultry products, an increase in the need for pathogen
prevention and efficient production management
options will become more critical. Besides the typical
production concerns, alternative poultry production
practices must also consider environmental impacts and
animal welfare concerns unique to their operations.
Without antimicrobials or chemical treatments, more
natural protective methods such as probiotic supplemen-
tation are needed to improve growth efficiency, product
quality, and food safety. The use of probiotics has been
shown to impact the microbial population of the GIT,
improve degradation of feedstuffs, elicit immunostimula-
tory properties, and exclude animal health agents and
foodborne pathogens in conventionally produced flocks.
Presumably, much of this also holds for alternative poul-
try production. Although individual probiotics may
vary, they have been shown to benefit alternative poul-
try production systems through various mechanisms.
However, poultry production responses are still some-
what unpredictable and identification of specific probi-
otic mechanisms in the GIT continues to be elusive. This
remains true for conventional poultry production and
likely holds true for alternative poultry production sys-
tems as well. In all cases a better understanding of the
functionally of probiotics once they enter the GIT is
needed.

To specifically improve the utility of probiotics in
alternative poultry production, further understanding
on how probiotics function and influence the GIT micro-
bial populations in birds raised under alternative poultry
production conditions is needed. As such, there is a need
for additional research to be conducted under alterna-
tive poultry production conditions to determine specific
immune system stimulation mechanisms mediated by
probiotic administration and if these alternative produc-
tion systems have unique impacts on bird responses
attributable to these environmental conditions. Further
investigations should focus on studying the bidirectional
interactions between the microbial population and the
host, particularly the probiotic impact on host tissue-
specific effects and the intestinal digestive process, which
could improve the use of these compounds in poultry.
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Advances in metagenomics, nutrigenomics, and metabo-
lomics should shed new light that will lead to a more
comprehensive understanding of these interactions.
Some of the critical issues to be considered when devel-
oping food animal probiotics include strain characteriza-
tion, end products from multiple dietary sources (e.g.,
cereal grain versus pasture), quality control, dose opti-
mization, heat stability, aerotolerance, and potential lat-
eral gene transfer from probiotics to native microbiota
(especially regarding antimicrobial resistance or toxin
genes). Therefore, developing a database of these
responses in vitro and in vivo of birds being raised under
alternative poultry production conditions will provide
the means to optimize probiotic applications specifically
for these birds.

Developing this database for alternative poultry pro-
duction systems has other advantages as well. A key
area of potential future research is the screening of pas-
ture flock birds for probiotic isolates that could be highly
effective in conventional poultry production systems.
Some of these probiotic candidates may possess specific
or unique properties related to their free-range source
that promote a certain level of robustness to counter
environmental and other stresses encountered in com-
mercial production systems. Likewise, differences in
diets and access to high fiber sources may potentially
select for GIT microorganisms that when administered
as probiotics could contribute to the breakdown of less
digestible components of cereal grain diets. Given the
wide range of alternative poultry production system
environments, along with dietary and breed differences,
the resulting diversity may offer a very wide range of
candidate probiotic isolates that could provide multiple
benefits beyond the typical probiotic cultures currently
in use for conventional commercial poultry production.

CONCLUSIONS

Alternative poultry production systems continue to
expand in response to increasing market demand. As
alternative poultry production capacity increases, the
need for feed additives that can protect bird health,
improve performance, and limit foodborne pathogen
establishment becomes more important as a manage-
ment tool. Several feed amendments are available for
potential use in alternative poultry production opera-
tions including phytochemicals, prebiotics, and probiot-
ics among others. The use of probiotics (e.g., eubiotics)
may be one of the more optimal solution that offers sev-
eral benefits and a wide range of applications in different
production conditions and diets (Gaggia et al., 2010).
Certainly there is precedent for their commercial appli-
cation based on their use in conventional poultry pro-
duction and it would appear that they have utility in
free-range poultry and other alternative production sys-
tems as well. The probiotic studies conducted thus
far would support the premise that probiotics may pro-
vide some benefits to alternative poultry management
outcomes.

However, more research is needed to better under-
stand how probiotics mediate their benefits to the bird
host. It is believed that probiotics can impact the GIT
microbial population to some extent such as limiting
foodborne pathogen colonization. However, the impact
on the overall GIT microbial populations is much less
clear. In recent years, numerous advanced “omics” stud-
ies have been carried out to expand an understanding of
probiotic impacts but these results remain highly vari-
able. Probiotic impacts (including extent, magnitude,
and duration) on microbial community responses
depend on many factors that are not entirely understood
at this time. The factors include species of bacteria and
corresponding quantities administered, guild function of
bacteria utilized, GIT ecological niche occupancy, micro-
bial population redundancy within niches, metabolic
products in the commercial probiotic (e.g., amino acids,
vitamins), ration, type of target animals (e.g., produc-
tion system, strain, age) and rearing conditions (e.g.,
presence or absence of environmental and production
stresses).

Some probiotic impacts in the GIT are becoming more
defined. For example, stress results in GIT dysbiosis,
which allows pathogens (both animal and foodborne) to
enter the animal and obtain a foothold in the GIT or sys-
tematically within the animal. Studies have found that
some probiotics indeed improve outcomes in poultry
undergoing stresses due to alleviating the selective pres-
sure of dysbiosis being introduced into the GIT. How-
ever, these subtle and limited impacts may not
encompass all the criteria desired for optimal health or
be detectable in standard production metrics such as
body weight gain, FCR, or meat quality. Therefore, care
must be taken in which probiotic is selected to determine
overall goals for the usage of the probiotic and which
parameters will be used to determine success. This may
be particularly true for alternative poultry productjon
systems where the potential influential factors may not
only be more complex than conventional operations but
more variable due to the fluctuations in environmental
exposure that these birds encounter. Optimizing the
selection of probiotics may help the bird in alternative
poultry production systems to achieve some stability to
effectively counter these variable conditions and not
compromise performance. Likewise, isolation of probi-
otic candidates from free-range poultry production sys-
tems may offer probiotic cultures with unique properties
that could benefit a wide range of poultry production
systems.
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