Browsing by Author "Elliott, Christopher T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item DIVA metabolomics: Differentiating vaccination status following viral challenge using metabolomic profiles(Public Library of Science, 2018-04-05) Gray, Darren W.; Welsh, Michael D.; Mansoor, Fawad; Doherty, Simon; Chevallier, Olivier P.; Elliott, Christopher T.; Mooney, Mark H.Bovine Respiratory Disease (BRD) is a major source of economic loss within the agricultural industry. Vaccination against BRD-associated viruses does not offer complete immune protection and vaccine failure animals present potential routes for disease spread. Serological differentiation of infected from vaccinated animals (DIVA) is possible using antigen-deleted vaccines, but during virus outbreaks DIVA responses are masked by wild-type virus preventing accurate serodiagnosis. Previous work by the authors has established the potential for metabolomic profiling to reveal metabolites associated with systemic immune responses to vaccination. The current study builds on this work by demonstrating for the first time the potential to use plasma metabolite profiling to differentiate between vaccinated and non-vaccinated animals following infection-challenge. Male Holstein Friesian calves were intranasally vaccinated (Pfizer RISPOVAL®PI3+RSV) and subsequently challenged with Bovine Parainfluenza Virus type-3 (BPI3V) via nasal inoculation. Metabolomic plasma profiling revealed that viral challenge led to a shift in acquired plasma metabolite profiles from day 2 to 20 p.i., with 26 metabolites identified whose peak intensities were significantly different following viral challenge depending on vaccination status. Elevated levels of biliverdin and bilirubin and decreased 3-indolepropionic acid in non-vaccinated animals at day 6 p.i. may be associated with increased oxidative stress and reactive oxygen scavenging at periods of peak virus titre. During latter stages of infection, increased levels of N-[(3α,5β,12α)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine and lysophosphatidycholine and decreased enterolactone in non-vaccinated animals may reflect suppression of innate immune response mechanisms and progression to adaptive immune responses. Levels of hexahydrohippurate were also shown to be significantly elevated in non-vaccinated animals from days 6 to 20 p.i. These findings demonstrate the potential of metabolomic profiling to identify plasma markers that can be employed in disease diagnostic applications to both differentially identify infected non-vaccinated animals during disease outbreaks and provide greater information on the health status of infected animals.Item MRM3-based UHPLC-MS/MS method for quantitation of total florfenicol residue content in milk and withdrawal study of profile of milk from treated cows(Elsevier, 2022-01-06) Faulkner, Dermot V.; Cantley, Lynne M.; Kennedy, David G.; Elliott, Christopher T.; Crooks, StevenFlorfenicol is a broad spectrum antibacterial, licensed globally for treatment of animal and aquaculture diseases. In the EU, Canada and US it is not permitted for use in animals producing milk or eggs. There are no published methods for analysis of total florfenicol content in milk/milk products as these lack a hydrolysis step, failing to meet the marker residue definition. A method for determining total florfenicol content in milk that meets this definition is reported for the first time. Use of a UHPLC-MS/MS multiple reaction monitoring-cubed method improved the selective detection and quantitation of lower levels of florfenicol amine in milk compared to MRM only. Single laboratory validation data and withdrawal profile in bovine milk are presented. A withdrawal period of over 50 days is indicated in case of off-label use. Requirement for hydrolysis is demonstrated.