Browsing by Author "McCleery, David"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Anti-Campylobacter Probiotics: Latest Mechanistic Insights(Mary Ann Liebert, 2022-07-29) Balta, Igori; Butucel, Eugenia; Stef, Lavinia; Pet, Ioan; Gradisteanu-Pircalabioru, Gratiela; Chifiriuc, Carmen; Gundogdu, Ozan; McCleery, David; Corcionivoschi, NicolaeThe Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen’s virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.Item The Effect Citrox BCL on Legionella pneumophila Mechanisms of Biofilm Formation, Oxidative Stress and Virulence(MDPI, 2022-11-04) Butucel, Eugenia; Balta, Igori; McCleery, David; Popescu, Cosmin Alin; Iancu, Tiberiu; Pet, Ioan; Marcu, Adela; Horablaga, Nicolae-Marinel; Stef, Lavinia; Corcionivoschi, NicolaeLegionella pneumophila is responsible for causing Legionnaires’ disease and Pontiac fever, also known as legionellosis. The aim of this study was to investigate the mechanistic effect of a mixture of natural antimicrobials (Citrox BCL) in preventing L. pneumophila biofilm formation and reducing its in vitro virulence. The minimum inhibitory concentrations were detected at 0.06%, and the MBC was established at 0.125%. Based on the growth curve profile, the sub-inhibitory concentration of 0.02% was further used to study the mechanistic implications in the absence of a cytotoxic effect on A549 cells. At 24 h post-infection, Citrox BCL reduced (p = 0.005) the intracellular growth of L. pneumophila when the A549 cells or the bacteria were pre-treated with 0.02% Citrox BCL. This result was replicated when Citrox BCL was added during the 24 h infection assay leading to a reduction in intracellular growth (p = 0.003). Herein we show that at the sub-inhibitory concentration of 0.02%, Citrox CBL lowers the ROS levels in infected A549 cells and causes a 45% reduction in L. pneumophila EPS production, a reduction associated with the decline in biofilm formation. Overall, our results corroborate the low c-di-GMP production with the decrease in biofilm formation and low EPS levels. The low EPS levels seemed to be caused by the downregulation of the tatB and tatC gene expressions. Moreover, inhibition of pvcA and pvcB gene expressions, leading to lower siderophore levels, suggests that Citrox BCL reduces the ability of L. pneumophila to sequester iron and reduce biofilm formation through iron starvation.Item Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms(MDPI, 2022-08-18) Butucel, Eugenia; Balta, Igori; McCleery, David; Morariu, Florica; Pet, Ioan; Popescu, Cosmin Alin; Stef, Lavinia; Corcionivoschi, NicolaeFarm biosecurity management includes a set of practical measures used to prevent and limit the spread of infections to humans and animals. Infections, predominantly caused by zoonotic agents, often occur due to a lack of safety standards monitoring on farms, but also because of the use of inappropriate antimicrobial products leading to bacterial resistance, tolerance to biocides and the emergence antimicrobial-resistant germs. To date, research was mainly focused on studying the antimicrobial resistance in bacterial biofilms and the mechanisms involved in their occurrence. At molecular level, the limited diffusion of biocides in the biofilm matrix, enzyme-mediated resistance, genetic adaptation, efflux pumps, and levels of metabolic activity inside the biofilm are some of the investigated biological mechanisms which can promote antimicrobial resistance in biofilms were also investigated. Interventions, based on the identification of novel antimicrobial compounds, that would exclude the occurrence of bacterial tolerance, including essential oils (oregano, cloves), organic acids (tannic & oleic acid) and natural plant compounds (e.g. alkaloids, flavonoids, tannins and coumarins) were also extensively studied and reviewed given their effectiveness against pathogen-produced biofilms. The aim of this review was emphasize the importance of biosecurity and farm management practices and to assess their impact on bacterial biofilm formation. Furthermore, we present the recent intervention strategies aimed at reducing and combating the formation of bacterial biofilms in livestock farms.Item Natural Antimicrobials Promote the Anti-Oxidative Inhibition of COX-2 Mediated Inflammatory Response in Primary Oral Cells Infected with Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis(2023-04-28) Butucel, Eugenia; Balta, Igori; Bundurus, Iulia Adelina; Popescu, Cosmin Alin; Iancu, Tiberiu; Venig, Adelina; Pet, Ioan; Stef, Ducu; McCleery, David; Stef, Lavinia; Corcionivoschi, NicolaeStaphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis can colonize the tooth root canals, adhere to dentin walls, and frequently cause periodontitis in dogs. Bacterial periodontal diseases are common in domesticated pets, causing severe oral cavity inflammation and a strong immune response. This study investigates the antioxidant effect of a natural antimicrobial mixture (Auraguard—Ag) on the ability of S. aureus, S. pyogenes and E. faecalis to infect primary canine oral epithelial cells as well as its impact on their virulence factors. Our data show that a concentration of 0.25% Ag is sufficient to inhibit the growth of all three pathogens, whereas a concentration of 0.5% will become bactericidal. The sub-inhibitory concentration of 0.125% Ag reveals that the antimicrobial mixture can significantly reduce biofilm formation and exopolysaccharide production. The impact on these virulence factors was further translated into a significantly reduced ability to infect primary canine oral epithelial cells and restore epithelial tight junctions, with no impact on the epithelial cell viability. The post-infection inflammatory cytokines (IL-1β and IL-8) and the COX-2 mediator were also reduced both in mRNA and protein expression levels. The oxidative burst, detected upon infection, was also decreased in the presence of Ag, as our results show a significant decrease in H2O2 released by the infected cells. We show that inhibition of either NADPH or ERK activity will result in a downregulation of COX-2 expression and lower levels of H2O2 in infected cells. Conclusively, our study shows that natural antimicrobials reduce pro-inflammatory events, post infection, through an antioxidative mechanism that involves the downregulation of the COX-2 mediator via the inactivation of ERK in the absence of H2O2. As a result, they significantly reduce the risk of secondary bacterial infections and host oxidative stress caused by Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis accumulation in biofilms in an in vitro canine oral infection model.Item Overview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates(MDPI, 2023-02-17) Bundurus, Iulia Adelina; Balta, Igor; Stef, Lavinia; Ahmadi, Mirela; Pet, Ioan; McCleery, David; Corcionivoschi, NicolaeCampylobacter remains the most prevalent foodborne pathogen bacterium responsible for causing gastroenteritis worldwide. Specifically, this pathogen colonises a ubiquitous range of environments, from poultry, companion pets and livestock animals to humans. The bacterium is uniquely adaptable to various niches, leading to complicated gastroenteritis and, in some cases, difficult to treat due to elevated resistance to certain antibiotics. This increased resistance is currently detected via genomic, clinical or epidemiological studies, with the results highlighting worrying multi-drug resistant (MDR) profiles in many food and clinical isolates. The Campylobacter genome encodes a rich inventory of virulence factors offering the bacterium the ability to influence host immune defences, survive antimicrobials, form biofilms and ultimately boost its infection-inducing potential. The virulence traits responsible for inducing clinical signs are not sufficiently defined because several populations have ample virulence genes with physiological functions that reflect their pathogenicity differences as well as a complement of antimicrobial resistance (AMR) systems. Therefore, exhaustive knowledge of the virulence factors associated with Campylobacter is crucial for collecting molecular insights into the infectivity processes, which could pave the way for new therapeutical targets to combat and control the infection and mitigate the spread of MDR bacteria. This review provides an overview of the spread and prevalence of genetic determinants associated with virulence and antibiotic resistance from studies performed on livestock animals. In addition, we have investigated the relevant coincidental associations between the prevalence of the genes responsible for pathogenic virulence, horizontal gene transfer (HGT) and transmissibility of highly pathogenic Campylobacter strainsItem The Prebiotic Effect of an Organic Acid Mixture on Faecalibacterium prausnitzii Metabolism and Its Anti-Pathogenic Role against Vibrio parahaemolyticus in Shrimp(MDPI, 2022-12-29) Butucel, Eugenia; Balta, Igori; McCleery, David; Marcu, Adela; Stef, Ducu; Pet, Ioan; Callaway, Todd; Stef, Lavinia; Corcionivoschi, NicolaeIncreasing the abundance of probiotic bacteria in the gut requires either direct dietary supplementation or the inclusion of feed additives able to support the growth of beneficial commensal bacteria. In crustaceans, the increased presence of probiotic-like bacteria in the gut, including of Faecalibacterium prausnitzii (F. prausnitzii), will guarantee a positive health status and a gut environment that will ensure enhanced performance. The aim of this study was to investigate if a mixture of organic acids, AuraAqua (Aq) can stimulate the growth and the anti-pathogenic efficacy of F. prausnitzii through a combination of in vitro and ex vivo models. The results showed that 0.5% Aq was able to improve the growth rate of F. prausnitzii in vitro and in an ex vivo shrimp gut model. Moreover, we were able to demonstrate that Aq increases butyrate production and cellulose degradation in culture or in the shrimp gut model. The growth-stimulating effect of Aq also led to an improved and anti-pathogenic effect against Vibrio parahaemolyticus in a co-culture experiment with shrimp gut primary epithelial cells (SGP). In conclusion, our work demonstrates that Aq can stimulate the growth of F. prausnitzii, increase the production of short-chain fatty acid (SCFA) butyrate, improve substrate digestion, and prevent V. parahaemolyticus invasion of SGP cells.