Browsing by Author "Mooney, Mark H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCo-infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012(Wiley, 2020-10-18) Lagan Tregaskis, Paula; Staines, Anthony; Gordon, Alan; Sheridan, Pauline; McMenamy, Michael; Duffy, Catherine; Collins, P. J.; Mooney, Mark H.; Lemon, KenAs global pig health diseases, porcine respiratory disease complex (PRDC) and porcine circovirus-associated disease (PCVAD) generate substantial economic losses despite pigs been vaccinated against the primary causative virus, highlighting the importance of understanding virome interactions and specifically co-factor infections. Established primary endemic pathogens for PRDC include porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSv) and swine influenza virus (SIV), and PCV2 aetiology in interaction with other co-infecting viruses can result in PCVAD. Porcine parvovirus (PPV) 1 is a well-characterized virus with an available vaccine preventing reproductive failure in sows. However, whilst novel PPV 2 to 7 viruses have been identified since 2001, their viral pathogenic potential in clinical and subclinical disease remains to be determined. Therefore, this study has sought to develop a better understanding of their potential role as associated co-infections in PRDC and PCVAD by examining archival samples for the presence of PCV2 and the novel parvoviruses PPV2-4 from clinically diseased pigs across production age stages. Epidemiologically, the novel PPV2 was found to be the most prevalent within the fattener age group with PPV2-4 statistically associated with pig respiratory disease and enteric ulcers. Additionally, statistical modelling by latent class analysis (LCA) on veterinary pathology scored pigs found a clustering co-factor association between PPV2 and PCV2, suggesting the novel PPV may be involved in PRDC and PCVAD. Phylogenetic analysis of novel PPVs revealed the PPV2 capsid evolution to be diverged from the original strains with a low nucleotide homology of 88%–96% between two distinct clades. These findings determine that novel PPV 2–4 viruses are statistically associated as co-infectors in a diseased pig population, and significantly detected PPV2 clustering co-infection frequency with PCV2 in PRDC and PCVAD diseased pigs through LCA analysis.
- ItemDIVA metabolomics: Differentiating vaccination status following viral challenge using metabolomic profiles(Public Library of Science, 2018-04-05) Gray, Darren W.; Welsh, Michael D.; Mansoor, Fawad; Doherty, Simon; Chevallier, Olivier P.; Elliott, Christopher T.; Mooney, Mark H.Bovine Respiratory Disease (BRD) is a major source of economic loss within the agricultural industry. Vaccination against BRD-associated viruses does not offer complete immune protection and vaccine failure animals present potential routes for disease spread. Serological differentiation of infected from vaccinated animals (DIVA) is possible using antigen-deleted vaccines, but during virus outbreaks DIVA responses are masked by wild-type virus preventing accurate serodiagnosis. Previous work by the authors has established the potential for metabolomic profiling to reveal metabolites associated with systemic immune responses to vaccination. The current study builds on this work by demonstrating for the first time the potential to use plasma metabolite profiling to differentiate between vaccinated and non-vaccinated animals following infection-challenge. Male Holstein Friesian calves were intranasally vaccinated (Pfizer RISPOVAL®PI3+RSV) and subsequently challenged with Bovine Parainfluenza Virus type-3 (BPI3V) via nasal inoculation. Metabolomic plasma profiling revealed that viral challenge led to a shift in acquired plasma metabolite profiles from day 2 to 20 p.i., with 26 metabolites identified whose peak intensities were significantly different following viral challenge depending on vaccination status. Elevated levels of biliverdin and bilirubin and decreased 3-indolepropionic acid in non-vaccinated animals at day 6 p.i. may be associated with increased oxidative stress and reactive oxygen scavenging at periods of peak virus titre. During latter stages of infection, increased levels of N-[(3α,5β,12α)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine and lysophosphatidycholine and decreased enterolactone in non-vaccinated animals may reflect suppression of innate immune response mechanisms and progression to adaptive immune responses. Levels of hexahydrohippurate were also shown to be significantly elevated in non-vaccinated animals from days 6 to 20 p.i. These findings demonstrate the potential of metabolomic profiling to identify plasma markers that can be employed in disease diagnostic applications to both differentially identify infected non-vaccinated animals during disease outbreaks and provide greater information on the health status of infected animals.
- ItemGenome analyses of species A rotavirus isolated from various mammalian hosts in Northern Ireland during 2013−2016(Oxford Univerity Press, 2023-07-04) Lagan, Paula; Mooney, Mark H.; Lemon, KenRotavirus group A (RVA) is the most important cause of acute diarrhoea and severe dehydration in young mammals. Infection in livestock is associated with significant mortality and economic losses and, together with wildlife reservoirs, acts as a potential source of zoonotic transmission. Therefore, molecular surveillance of circulating RVA strains in animal species is necessary to assess the risks posed to humans and their livestock. An RVA molecular epidemiological surveillance study on clinically diseased livestock species revealed high prevalence in cattle and pigs (31 per cent and 18 per cent, respectively) with significant phylogenetic diversity including a novel and divergent ovine artiodactyl DS-1-like constellation G10-P[15]-I2-R2-C2-M2-A11-N2-T6-E2-H3. An RVA gene reassortment occurred in an RVA asymptomatic pig and identified as a G5-P[13] strain, and a non-structural protein (NSP)2 gene had intergenomically reassorted with a human RVA strain (reverse zoonosis) and possessed a novel NSP4 enterotoxin E9 which may relate to the asymptomatic RVA infection. Analysis of a novel sheep G10-P[15] strain viral protein 4 gene imparts a putative homologous intergenic and interspecies recombination event, subsequently creating the new P[15] divergent lineage. While surveillance across a wider range of wildlife and exotic species identified generally negative or low prevalence, a novel RVA interspecies transmission in a non-indigenous pudu deer (zoo origin) with the constellation of G6-P[11]12-R2-C2-M2-A3-N2-T6-E2-H3 was detected at a viral load of 11.1 log10 copies/gram. The detection of novel emerging strains, interspecies reassortment, interspecies infection, and recombination of RVA circulating in animal livestock and wildlife reservoirs is of paramount importance to the RVA epidemiology and evolution for the One Health approach and post-human vaccine introduction era where highly virulent animal RVA genotypes have the potential to be zoonotically transmitted.