Browsing by Author "Stef, Lavinia"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- ItemAnti-Campylobacter Probiotics: Latest Mechanistic Insights(Mary Ann Liebert, 2022-07-29) Balta, Igori; Butucel, Eugenia; Stef, Lavinia; Pet, Ioan; Gradisteanu-Pircalabioru, Gratiela; Chifiriuc, Carmen; Gundogdu, Ozan; McCleery, David; Corcionivoschi, NicolaeThe Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen’s virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
- ItemThe Antioxidant Effect of Natural Antimicrobials in Shrimp Primary Intestinal Cells Infected with Nematopsis messor(MDPI, 2022-05-15) Balta, Igori; Stef, Lavinia; Butucel, Eugenia; Pircalabioru, Gratiela Gradisteanu; Venig, Adelina; Ward, Patrick; Deshaies, Myriam; Pet, Ioan; Stef, Ducu; Koyun, Osman Y.; Callaway, Todd R.; Gundogdu, Ozan; Corcionivoschi, NicolaeNematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp’s intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity
- ItemBiocides as Biomedicines against Foodborne Pathogenic Bacteria(MDPI, 2022-02-04) Butucel, Eugenia; Balta, Igori; Ahmadi, Mirela; Dumitrescu, Gabi; Morariu, Florica; Pet, Ioan; Stef, Lavinia; Corcionivoschi, NicolaeBiocides are currently considered the first line of defense against foodborne pathogens in hospitals or food processing facilities due to the versatility and efficiency of their chemical active ingredients. Understanding the biological mechanisms responsible for their increased efficiency, especially when used against foodborne pathogens on contaminated surfaces and materials, represents an essential first step in the implementation of efficient strategies for disinfection as choosing an unsuitable product can lead to antibiocide resistance or antibiotic–biocide cross-resistance. This review describes these biological mechanisms for the most common foodborne pathogens and focuses mainly on the antipathogen effect, highlighting the latest developments based on in vitro and in vivo studies. We focus on biocides with inhibitory effects against foodborne bacteria (e.g., Escherichia spp., Klebsiella spp., Staphylococcus spp., Listeria spp., Campylobacter spp.), aiming to understand their biological mechanisms of action by looking at the most recent scientific evidence in the field.
- ItemThe Effect Citrox BCL on Legionella pneumophila Mechanisms of Biofilm Formation, Oxidative Stress and Virulence(MDPI, 2022-11-04) Butucel, Eugenia; Balta, Igori; McCleery, David; Popescu, Cosmin Alin; Iancu, Tiberiu; Pet, Ioan; Marcu, Adela; Horablaga, Nicolae-Marinel; Stef, Lavinia; Corcionivoschi, NicolaeLegionella pneumophila is responsible for causing Legionnaires’ disease and Pontiac fever, also known as legionellosis. The aim of this study was to investigate the mechanistic effect of a mixture of natural antimicrobials (Citrox BCL) in preventing L. pneumophila biofilm formation and reducing its in vitro virulence. The minimum inhibitory concentrations were detected at 0.06%, and the MBC was established at 0.125%. Based on the growth curve profile, the sub-inhibitory concentration of 0.02% was further used to study the mechanistic implications in the absence of a cytotoxic effect on A549 cells. At 24 h post-infection, Citrox BCL reduced (p = 0.005) the intracellular growth of L. pneumophila when the A549 cells or the bacteria were pre-treated with 0.02% Citrox BCL. This result was replicated when Citrox BCL was added during the 24 h infection assay leading to a reduction in intracellular growth (p = 0.003). Herein we show that at the sub-inhibitory concentration of 0.02%, Citrox CBL lowers the ROS levels in infected A549 cells and causes a 45% reduction in L. pneumophila EPS production, a reduction associated with the decline in biofilm formation. Overall, our results corroborate the low c-di-GMP production with the decrease in biofilm formation and low EPS levels. The low EPS levels seemed to be caused by the downregulation of the tatB and tatC gene expressions. Moreover, inhibition of pvcA and pvcB gene expressions, leading to lower siderophore levels, suggests that Citrox BCL reduces the ability of L. pneumophila to sequester iron and reduce biofilm formation through iron starvation.
- ItemThe effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp.(Elsevier, 2020-11-13) Balta, Igori; Linton, W. Mark R.; Pinkerton, Laurette; Kelly, Carmel A.; Stef, Lavinia; Pet, Ioan; Stef, Ducu; Criste, Adriana; Gundogdu, Ozan; Corcionivoschi, NicolaeThe increased resistance of campylobacters to antibiotics required the identification and isolation of novel antimicrobials able to inhibit its virulence, to cause less or no resistance and display no host toxicity. Acquiring all this knowledge was only possible through a better understanding of their antibacterial potency and of the biological mechanisms involved attenuating the bacterial virulence factors. This review describes the most recent developments in the area by looking at the new antimicrobial interventions aiming to combat the transmission and colonisation of Campylobacter spp. and its commonalities with other pathogenic bacteria. In this review we are also looking into the most recent developments, both in vitro and in vivo, focusing on the biological mechanisms by which natural antimicrobials express their anti-pathogenic effect. Following this extensive literature search we conclude that further studies are essential to elucidate the efficiency of plant, animal, bacteria and marine-derived antimicrobials as well as their role as promising alternatives to antibiotics.
- ItemEssential fatty acids as biomedicines in cardiac health(MDPI, 2021-10-14) Balta, Igori; Stef, Lavinia; Pet, Ioan; Iancu, Tiberiu; Stef, Ducu; Corcionivoschi, NicolaeThe destructive impact of cardiovascular diseases on health, including heart failure, peripheral artery disease, atherosclerosis, stroke, and other cardiac pathological conditions, positions these health conditions as leading causes of increased global mortality rates, thereby impacting the human quality of life. The considerable changes in modern lifestyles, including the increase in food intake and the change in eating habits, will unavoidably lead to an unbalanced consumption of essential fatty acids, with a direct effect on cardiovascular health problems. In the last decade, essential fatty acids have become the main focus of scientific research in medical fields aiming to establish their impact for preventing cardiovascular diseases and the associated risk factors. Specifically, polyunsaturated fatty acids (PUFA), such as omega 3 fatty acids, and monounsaturated fatty acids from various sources are mentioned in the literature as having a cardio-protective role, due to various biological mechanisms that are still to be clarified. This review aims to describe the major biological mechanisms of how diets rich in essential fatty acids, or simply essential fatty acid administration, could have anti-inflammatory, vasodilatory, anti-arrhythmic, antithrombotic, antioxidant, and anti-atherogenic effects. This review describes findings originating from clinical studies in which dietary sources of FAs were tested for their role in mitigating the impact of heart disorders in human health
- ItemFarm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms(MDPI, 2022-08-18) Butucel, Eugenia; Balta, Igori; McCleery, David; Morariu, Florica; Pet, Ioan; Popescu, Cosmin Alin; Stef, Lavinia; Corcionivoschi, NicolaeFarm biosecurity management includes a set of practical measures used to prevent and limit the spread of infections to humans and animals. Infections, predominantly caused by zoonotic agents, often occur due to a lack of safety standards monitoring on farms, but also because of the use of inappropriate antimicrobial products leading to bacterial resistance, tolerance to biocides and the emergence antimicrobial-resistant germs. To date, research was mainly focused on studying the antimicrobial resistance in bacterial biofilms and the mechanisms involved in their occurrence. At molecular level, the limited diffusion of biocides in the biofilm matrix, enzyme-mediated resistance, genetic adaptation, efflux pumps, and levels of metabolic activity inside the biofilm are some of the investigated biological mechanisms which can promote antimicrobial resistance in biofilms were also investigated. Interventions, based on the identification of novel antimicrobial compounds, that would exclude the occurrence of bacterial tolerance, including essential oils (oregano, cloves), organic acids (tannic & oleic acid) and natural plant compounds (e.g. alkaloids, flavonoids, tannins and coumarins) were also extensively studied and reviewed given their effectiveness against pathogen-produced biofilms. The aim of this review was emphasize the importance of biosecurity and farm management practices and to assess their impact on bacterial biofilm formation. Furthermore, we present the recent intervention strategies aimed at reducing and combating the formation of bacterial biofilms in livestock farms.
- ItemThe in vitro and ex vivo effect of Auranta 3001 in preventing Cryptosporidium hominis and Cryptosporidium parvum infection(BMC, 2017-08-31) Ch Stratakos, Alexandros; Sima, Filip; Ward, Patrick; Linton, Mark; Kelly, Carmel; Pinkerton, Laurette; Stef, Lavinia; Pet, Ioan; Iancu, Tiberiu; Pircalabioru, Gratiela; Corcionivoschi, NicolaeBackground: Cryptosporidium is a major cause of diarrhea worldwide in both humans and farm animals with no completely effective treatment available at present. In this study, we assessed the inhibitory effect of different concentrations of Auranta 3001 (0.1, 0.5 and 1%), a novel natural feed supplement, on C. hominis and C. parvum invasion of human ileocecal adenocarcinoma (HCT-8), bovine primary cells and C. parvum invasion of HCT-8, bovine primary cells and bovine intestinal biopsies. The effect of the feed supplement on the production of pro-inflammatory cytokines IL-8 and INF-γ, the anti-inflammatory cytokine IL-10, the expression of CpSUB1 protease gene during infection was also assessed by quantitative PCR (q-PCR). Transepithelial electrical resistance (TEER) was employed to measure the integrity of tight junction dynamics of the culture models. Results: Pre-treatment of intestinal cells or oocysts with the Auranta 3001 significantly reduced the invasiveness of C. hominis and C. parvum against HCT-8 and bovine primary cells in a dose dependent manner. The most pronounced reduction in the invasiveness of both parasites was observed when Auranta 3001 was present during infection. Levels of IL-8 were significantly reduced in both HCT-8 and bovine primary cells, while the levels of INF-γ and IL-10 showed opposite trends in the two cell lines during infection in the presence of Auranta 3001. CpSUB1 gene protease expression, which mediates infection, was significantly reduced suggesting that this enzyme is a possible target of Auranta 3001. Conclusions: Although, C. hominis and C. parvum use different invasion mechanisms to infect cells, the novel feed additive can significantly attenuate the entry of Cryptosporidium in HCT-8 cells, primary bovine cells and bovine intestinal biopsies and thus provide an alternative method to control cryptosporidiosis.
- ItemMixtures of natural antimicrobials can reduce Campylobacter jejuni, Salmonella enterica and Clostridium perfringens infections and cellular inflammatory response in MDCK cells(Springer, 2021-06-07) Balta, Igori; Marcu, Adela; Linton, W. Mark R.; Kelly, Carmel A.; Gundogdu, Ozan; Stef, Lavinia; Pet, Ioan; Ward, Patrick; Deshales, Myriam; callaway, Todd; Sopharat, Phittawat; Gradisteanu-Pircalabioru, Gratiela; Corcionivoschi, NicolaeBackground: The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin–Darby Canine Kidney cells (MDCK). Results: Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1β, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide ( H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). Conclusion: The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate).
- ItemNatural Antimicrobials Block the Host NF-κB Pathway and Reduce Enterocytozoon hepatopenaei Infection Both In Vitro and In Vivo(MDPI, 2023-07-20) Bundurus, Iulia Adelina; Balta, Igori; Butucel, Eugenia; Callaway, Todd; Popescu, Cosmin Alin; Iancu, Tiberiu; Pet, Ioan; Stef, Lavinia; Corcionivoschi, Nicolae; Animal Health and WelfareThe objective of this work was to investigate, for the first time, the antioxidant effect of a mixture of natural antimicrobials in an Enterocytozoon hepatopenaei (EHP) shrimp-gut model of infection and the biological mechanisms involved in their way of action. The study approach included investigations, firstly, in vitro, on shrimp-gut primary (SGP) epithelial cells and in vivo by using EHP-challenged shrimp. Our results show that exposure of EHP spores to 0.1%, 0.5%, 1%, and 2% AuraAqua (Aq) significantly reduced spore activity at all concentrations but was more pronounced after exposure to 0.5% Aq. The Aq was able to reduce EHP infection of SGP cells regardless of cells being pretreated or cocultured during infection with Aq. The survivability of SGP cells infected with EHP spores was significantly increased in both scenarios; however, a more noticeable effect was observed when the infected cells were pre-exposed to Aq. Our data show that infection of SGP cells by EHP activates the host NADPH oxidases and the release of H2O2 produced. When Aq was used during infection, a significant reduction in H2O2 was observed concomitant with a significant increase in the levels of CAT and SOD enzymes. Moreover, in the presence of 0.5% Aq, the overproduction of CAT and SOD was correlated with the inactivation of the NF-κB pathway, which, otherwise, as we show, is activated upon EHP infection of SGP cells. In a challenge test, Aq was able to significantly reduce mortality in EHP-infected shrimp and increase the levels of CAT and SOD in the gut tissue. Conclusively, these results show, for the first time, that a mixture of natural antimicrobials (Aq) can reduce the EHP-spore activity, improve the survival rates of primary gut-shrimp epithelial cells and reduce the oxidative damage caused by EHP infection. Moreover, we show that Aq was able to stop the H2O2 activation of the NF-κB pathway of Crustins, Penaeidins, and the lysozyme, and the CAT and SOD activity both in vitro and in a shrimp challenge test.
- ItemNatural Antimicrobials Promote the Anti-Oxidative Inhibition of COX-2 Mediated Inflammatory Response in Primary Oral Cells Infected with Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis(2023-04-28) Butucel, Eugenia; Balta, Igori; Bundurus, Iulia Adelina; Popescu, Cosmin Alin; Iancu, Tiberiu; Venig, Adelina; Pet, Ioan; Stef, Ducu; McCleery, David; Stef, Lavinia; Corcionivoschi, NicolaeStaphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis can colonize the tooth root canals, adhere to dentin walls, and frequently cause periodontitis in dogs. Bacterial periodontal diseases are common in domesticated pets, causing severe oral cavity inflammation and a strong immune response. This study investigates the antioxidant effect of a natural antimicrobial mixture (Auraguard—Ag) on the ability of S. aureus, S. pyogenes and E. faecalis to infect primary canine oral epithelial cells as well as its impact on their virulence factors. Our data show that a concentration of 0.25% Ag is sufficient to inhibit the growth of all three pathogens, whereas a concentration of 0.5% will become bactericidal. The sub-inhibitory concentration of 0.125% Ag reveals that the antimicrobial mixture can significantly reduce biofilm formation and exopolysaccharide production. The impact on these virulence factors was further translated into a significantly reduced ability to infect primary canine oral epithelial cells and restore epithelial tight junctions, with no impact on the epithelial cell viability. The post-infection inflammatory cytokines (IL-1β and IL-8) and the COX-2 mediator were also reduced both in mRNA and protein expression levels. The oxidative burst, detected upon infection, was also decreased in the presence of Ag, as our results show a significant decrease in H2O2 released by the infected cells. We show that inhibition of either NADPH or ERK activity will result in a downregulation of COX-2 expression and lower levels of H2O2 in infected cells. Conclusively, our study shows that natural antimicrobials reduce pro-inflammatory events, post infection, through an antioxidative mechanism that involves the downregulation of the COX-2 mediator via the inactivation of ERK in the absence of H2O2. As a result, they significantly reduce the risk of secondary bacterial infections and host oxidative stress caused by Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis accumulation in biofilms in an in vitro canine oral infection model.
- ItemNovel Insights into the Role of Probiotics in Respiratory Infections, Allergies, Cancer, and Neurological Abnormalities(MDPI, 2021-09-02) Balta, Igori; Butucel, Eugenia; Mohylyuk, Valentyn; Criste, Adriana; Dezmirean, Daniel Severus; Stef, Lavinia; Pet, Ioan; Corcionivoschi, NicolaeIn recent years, probiotics have attracted public attention and transformed the social perception of microorganisms, convening a beneficial role/state on human health. With aging, the immune system, body physiology, and intestinal microbiota tend to change unfavorably, resulting in many chronic conditions. The immune-mediated disorders can be linked to intestinal dysbiosis, consequently leading to immune dysfunctions and a cluster of conditions such as asthma, autoimmune diseases, eczema, and various allergies. Probiotic bacteria such as Lactobacillus and Bifidobacterium species are considered probiotic species that have a great immunomodulatory and anti-allergic effect. Moreover, recent scientific and clinical data illustrate that probiotics can regulate the immune system, exert anti-viral and anti-tumoral activity, and shields the host against oxidative stress. Additionally, microbiota programming by probiotic bacteria can reduce and prevent the symptoms of respiratory infections and ameliorate the neurological status in humans. This review describes the most recent clinical findings, including safe probiotic therapies aiming to medicate respiratory infections, allergies, cancer, and neurological disorders due to their physiological interconnection. Subsequently, we will describe the major biological mechanism by which probiotic bacteriotherapy expresses its anti-viral, anti-allergic, anticancer, and neuro-stimulatory effects
- ItemA Novel Natural Antimicrobial Can Reduce the in vitro and in vivo Pathogenicity of T6SS Positive Campylobacter jejuni and Campylobacter coli Chicken Isolates(Frontiers Media, 2018-09-07) Sima, Filip; Stratakos, Alexandros Ch.; Ward, Patrick; Linton, Mark; Kelly, Carmel; Pinkerton, Laurette; Stef, Lavinia; Gundogdu, Ozan; Lazar, Veronica; Corcionivoschi, NicolaeHuman campylobacteriosis is considered one of the most common foodborne diseases worldwide with poultry identified as the main source of infection accounting for 50– 80% of human cases. Highly virulent Campylobacter spp., positive for the Type VI secretion system (T6SS), which have an increased ability to adhere to and invade the host gastrointestinal epithelium are highly prevalent in poultry. Multidrug resistant strains of bacteria are rapidly evolving and therefore, new antimicrobials to supplement animal feed that are able to control Campylobacter species, are in great need. The work presented herein indicates that a novel phenolic antimicrobial, Auranta 3001, is able to reduce the adhesion and invasion of human intestinal epithelial cells (HCT- 8) by two T6SS positive chicken isolates, C. jejuni RC039 (p < 0.05) and C. coli RC013 (p < 0.001). Exposure of C. jejuni RC039 and C. coli RC013 to Auranta 3001 downregulated the expression of hcp and cetB genes, known to be important in the functionality of T6SS. Furthermore, the reduced adhesion and invasion is associated with a significant decrease in bacterial motility of both isolates (p < 0.05–p < 0.001) in vitro. Most importantly our in vivo results show that Auranta 3001 is able to reduce cecum colonization levels from log 8 CFU/ml to log 2 CFU/ml for C. jejuni RC039 and from log 7 CFU/ml to log 2 CFU/ml for C. coli RC013. In conclusion, this novel antimicrobial is able to reduce the pathogenic properties of T6SS campylobacters in vitro and also to decrease colonization in vivo.
- ItemOverview of Virulence and Antibiotic Resistance in Campylobacter spp. Livestock Isolates(MDPI, 2023-02-17) Bundurus, Iulia Adelina; Balta, Igor; Stef, Lavinia; Ahmadi, Mirela; Pet, Ioan; McCleery, David; Corcionivoschi, NicolaeCampylobacter remains the most prevalent foodborne pathogen bacterium responsible for causing gastroenteritis worldwide. Specifically, this pathogen colonises a ubiquitous range of environments, from poultry, companion pets and livestock animals to humans. The bacterium is uniquely adaptable to various niches, leading to complicated gastroenteritis and, in some cases, difficult to treat due to elevated resistance to certain antibiotics. This increased resistance is currently detected via genomic, clinical or epidemiological studies, with the results highlighting worrying multi-drug resistant (MDR) profiles in many food and clinical isolates. The Campylobacter genome encodes a rich inventory of virulence factors offering the bacterium the ability to influence host immune defences, survive antimicrobials, form biofilms and ultimately boost its infection-inducing potential. The virulence traits responsible for inducing clinical signs are not sufficiently defined because several populations have ample virulence genes with physiological functions that reflect their pathogenicity differences as well as a complement of antimicrobial resistance (AMR) systems. Therefore, exhaustive knowledge of the virulence factors associated with Campylobacter is crucial for collecting molecular insights into the infectivity processes, which could pave the way for new therapeutical targets to combat and control the infection and mitigate the spread of MDR bacteria. This review provides an overview of the spread and prevalence of genetic determinants associated with virulence and antibiotic resistance from studies performed on livestock animals. In addition, we have investigated the relevant coincidental associations between the prevalence of the genes responsible for pathogenic virulence, horizontal gene transfer (HGT) and transmissibility of highly pathogenic Campylobacter strains
- ItemThe Prebiotic Effect of an Organic Acid Mixture on Faecalibacterium prausnitzii Metabolism and Its Anti-Pathogenic Role against Vibrio parahaemolyticus in Shrimp(MDPI, 2022-12-29) Butucel, Eugenia; Balta, Igori; McCleery, David; Marcu, Adela; Stef, Ducu; Pet, Ioan; Callaway, Todd; Stef, Lavinia; Corcionivoschi, NicolaeIncreasing the abundance of probiotic bacteria in the gut requires either direct dietary supplementation or the inclusion of feed additives able to support the growth of beneficial commensal bacteria. In crustaceans, the increased presence of probiotic-like bacteria in the gut, including of Faecalibacterium prausnitzii (F. prausnitzii), will guarantee a positive health status and a gut environment that will ensure enhanced performance. The aim of this study was to investigate if a mixture of organic acids, AuraAqua (Aq) can stimulate the growth and the anti-pathogenic efficacy of F. prausnitzii through a combination of in vitro and ex vivo models. The results showed that 0.5% Aq was able to improve the growth rate of F. prausnitzii in vitro and in an ex vivo shrimp gut model. Moreover, we were able to demonstrate that Aq increases butyrate production and cellulose degradation in culture or in the shrimp gut model. The growth-stimulating effect of Aq also led to an improved and anti-pathogenic effect against Vibrio parahaemolyticus in a co-culture experiment with shrimp gut primary epithelial cells (SGP). In conclusion, our work demonstrates that Aq can stimulate the growth of F. prausnitzii, increase the production of short-chain fatty acid (SCFA) butyrate, improve substrate digestion, and prevent V. parahaemolyticus invasion of SGP cells.