Browsing by Author "Wanapat, Metha"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Altitude influences microbial diversity and herbage fermentation in the rumen of yaks(BMC, 2020-12-04) Fan, Qingshan; Wanapat, Metha; Yan, Tianhai; Hou, FujiangBackground: Rumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity. Currently, limited information is available regarding the response of yaks (Bos grunniens) to fluctuating environments, especially the rumen microbiome. To address this, we investigated the diet, rumen bacterial community, and volatile fatty acids (VFA) of rumen fluid of yaks raised in the great Qinghai-Tibet plateau (QTP) at 2800 (low altitude, L), 3700 (middle altitude, M), and 4700 m (high altitude, H) above sea level. Results: The results showed that despite a partial diet overlap, H yaks harbored higher fibrous fractious contents than the M and L grazing yaks. Bacteria including Christensenellaceae_R-7_group, Ruminococcus_1, Romboutsia, Alloprevotella, Eubacterium coprostanoligenes, Clostridium, Streptococcus, and Treponema were found to be enriched in the rumen of yaks grazing at H. They also showed higher rumen microbial diversity and total VFA concentrations than those shown by yaks at M and L. Principal coordinates analysis (PCoA) on weighted UniFrac distances revealed that the bacterial community structure of rumen differed between the three altitudes. Moreover, Tax4fun metagenome estimation revealed that microbial genes associated with energy requirement and carbohydrate metabolic fate were overexpressed in the rumen microbiota of H yaks. Conclusions: Collectively, our results revealed that H yaks had a stronger herbage fermenting ability via rumen microbial fermentation. Their enhanced ability of utilizing herbage may be partly owing to a microbiota adaptation for more energy requirements in the harsh H environment, such as lower temperature and the risk of hypoxia.Item Cistanche deserticola Addition Improves Growth, Digestibility, and Metabolism of Sheep Fed on Fresh Forage from Alfalfa/Tall Fescue Pasture(MDPI, 2020-04-12) Liu, Xulei; Liu, Fuyao; Yan, Tianhai; Chang, Shenghua; Wanapat, Metha; Hou, FujiangThis study is targeted at evaluating whether C. deserticola addition promotes digestion, nitrogen and energy use, and methane production of sheep fed on fresh forage from alfalfa/tall fescue pastures. The sheep feeding trial was conducted with four addition levels with C. deserticola powder, and a basal diet of fresh alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea). Addition levels of 4% and 6% improved average body weight gain (BWG) by 215.71 and 142.86 g/d, and feed conversion ratio (FCR) by 0.20 and 0.14, respectively. Digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and ether extract (EE) was 62.25%, 65.18%, 58.75%, and 47.25% under the addition level of 2%, which is greater than that in the control group. C. deserticola addition improved energy utilization efficiency, while addition levels of 2% and 4% increased nitrogen intake and deposited nitrogen. Overall, C. deserticola has the potential to improve growth performance, digestion of sheep, so it has suitability to be used as a feed additive.Item Rumen microbiota of Tibetan sheep (Ovis aries) adaptation to extremely cold season on the Qighai-Tibetan Plateau(Frontiers Media, 2021-05-25) Fan, Qingshan; Cui, Xiongxiong; Wang, Zhaofeng; Chang, Shenghua; Wanapat, Metha; Yan, Tianhai; Hou, FujiangThe Qinghai-Tibet Plateau is characterized by low temperatures and hypoxia, and this feature is more obvious in the winter. However, it is not clear how Tibetan sheep adapt to extreme cold climates. To address this, we used physiological methods combined with next-generation sequencing technology to explore the differences in growth performance, forage nutrient digestion, serum biochemical indexes, and rumen microbial communities of Tibetan sheep (Ovis aries) between the summer and winter. In the summer, owing to the high nutritional quality of the forage, the Tibetan sheep showed enhanced forage degradation and fermentation though increased counts of important bacteria in the rumen, such as Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014, to improve the growth performance and increase serum immunity and antioxidant status. In the winter, owing to the low nutritional quality of the forage, the Tibetan sheep presented low values of forage degradation and fermentation indicators. The relative abundance of Firmicutes, the Firmicutes/Bacteroidetes ratio, microbial diversity, interactive activity between microorganisms, and metabolism were significantly increased, implying that the rumen microbiota could promote the decomposition of forage biomass and the maintenance of energy when forage nutritional value was insufficient in the winter. Our study helps in elucidating the mechanism by which Tibetan sheep adapt to the high-altitude harsh environments, from the perspective of the rumen microbiota.