Wastewater monitoring of human and avian influenza A viruses in Northern Ireland: a genomic surveillance study

Abstract

Background Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin. Methods Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK). Findings We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified. Interpretation WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.

Description

Publication history: Published online 9 October 2024

Keywords

Citation

Lee, A.J., Carson, S., Reyne, M.I., Marshall, A., Moody, D., Allen, D.M., Allingham, P., Levickas, A., Fitzgerald, A., Bell, S.H., Lock, J., Coey, J.D., McSparron, C., Nejad, B.F., Troendle, E.P., Simpson, D.A., Courtney, D.G., Einarsson, G.G., McKenna, J.P., Fairley, D.J., Curran, T., McKinley, J.M., Gilpin, D.F., Lemon, K., McGrath, J.W. and Bamford, C.G.G. (2024) ‘Wastewater monitoring of human and avian influenza A viruses in Northern Ireland: a genomic surveillance study’, The Lancet Microbe. Elsevier BV. Available at: https://doi.org/10.1016/s2666-5247(24)00175-7.

DOI

Collections