Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai–Tibetan Plateau
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
To better utilize native pasture at the high altitude region, three-consecutive-year feeding experiments and a total of seven metabolism trials were conducted to evaluate the impact of three forage stages of maturity on the chemical composition, nutrient digestibility, and energy metabolism of native forage in Tibetan sheep on the Qinghai–Tibetan Plateau (QTP). Forages were harvested from June to July, August to October, and November to December of 2011 to 2013, corresponding to the vegetative, bloom, and senescent stages of the annual forages. Twenty male Tibetan sheep were selected for each study and fed native forage ad libitum. The digestibility of DM, OM, CP, NDF, ADF, DE, DE/GE, and ME/GE were greatest (P < 0.01) from the vegetative stage, intermediate (P < 0.01) from the bloom stage, and least (P < 0.01) from the senescent stage. Nutrient digestibility and energy parameters correlated positively (linear, 0.422 to 0.778; quadratic, 0.568 to 0.815; P < 0.01) with the CP content of forage but correlated negatively with the content of NDF (linear, 0.343 to 0.689; quadratic, 0.444 to 0.777; P ≤ 0.02), ADF (linear, 0.563 to 0.766; quadratic, 0.582 to 0.770; P < 0.01), and ether extract (EE, linear, 0.283 to 0.574; quadratic, 0.366 to 0.718; P ≤ 0.04) of forage. For each predicted variable, the prediction of DMI expressed as grams per kilogram of BW (g/kg BW·d) yielded a greater R2 value (0.677 to 0.761 vs. 0.616 to 0.711) compared with the equations of DMI expressed as g/kg metabolic BW by step-wise regression. The results suggest that parameters of forage CP, NDF, and ADF content were most closely related to nutrient digestibility. Contrary to previous studies, in this study, ADF content had a greater linear relationship (0.766 vs. 0.563 to 0.732) with OM digestibility than the other parameters of nutrient digestibility. The quadratic relationship between forage CP content and CP digestibility indicates that when forage CP content exceeds the peak point (9.7% DM in the present study), increasing forage CP content could decrease CP digestibility when Tibetan sheep were offered native forage alone on the QTP. Additionally, using the forage CP, EE, NDF, and ADF content to predict DMI (g/kg BW·d) yielded the best fit equation for Tibetan sheep living in the northeast portion of the QTP