Machine learning in marine ecology: an overview of techniques and applications
dc.contributor.author | Rubbens, Peter | |
dc.contributor.author | Brodie, Stephanie | |
dc.contributor.author | Cordier, Tristan | |
dc.contributor.author | Destro Barcellos, Diogo | |
dc.contributor.author | Devos, Paul | |
dc.contributor.author | Fernandes-Salvador, Jose A. | |
dc.contributor.author | Fincham, Jennifer I. | |
dc.contributor.author | Gomes, Alessandra | |
dc.contributor.author | Handegard, Nils Olav | |
dc.contributor.author | Howell, Kerry | |
dc.contributor.author | Jamet, Cédric | |
dc.contributor.author | Kartveit, Kyrre Heldal | |
dc.contributor.author | Moustahfid, Hassan | |
dc.contributor.author | Parcerisas, Clea | |
dc.contributor.author | Politikos, Dimitris | |
dc.contributor.author | Sauzède, Raphaëlle | |
dc.contributor.author | Sokolova, Maria | |
dc.contributor.author | Uusitalo, Laura | |
dc.contributor.author | Van den Bulcke, Laure | |
dc.contributor.author | van Helmond, Aloysius T. M. | |
dc.contributor.author | Watson, Jordan T. | |
dc.contributor.author | Welch, Heather | |
dc.contributor.author | Beltran-Perez, Oscar | |
dc.contributor.author | Chaffron, Samuel | |
dc.contributor.author | Greenberg, David S. | |
dc.contributor.author | Kühn, Bernhard | |
dc.contributor.author | Kiko, Rainer | |
dc.contributor.author | Lo, Madiop | |
dc.contributor.author | Lopes, Rubens M. | |
dc.contributor.author | Möller, Klas Ove | |
dc.contributor.author | Michaels, William | |
dc.contributor.author | Pala, Ahmet | |
dc.contributor.author | Romagnan, Jean-Baptiste | |
dc.contributor.author | Schuchert, Pia | |
dc.contributor.author | Seydi, Vahid | |
dc.contributor.author | Villasante, Sebastian | |
dc.contributor.author | Malde, Ketil | |
dc.contributor.author | Irisson, Jean-Olivier | |
dc.contributor.department | Fisheries and Aquatic Ecosystems | |
dc.date.accessioned | 2023-09-18T14:22:12Z | |
dc.date.available | 2023-09-18T14:22:12Z | |
dc.date.issued | 2023-08-03 | |
dc.description | Publication history: Accepted - 26 May 2023; Published - 3 August 2023. | |
dc.description.abstract | Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets. | |
dc.description.sponsorship | All authors acknowledge the support of ICES through the Working group on Machine Learning in Marine Science (WGMLEARN). | |
dc.identifier | https://hdl.handle.net/20.500.12518/579 | |
dc.identifier.citation | Rubbens, P., Brodie, S., Cordier, T., Destro Barcellos, D., Devos, P., Fernandes-Salvador, J.A., Fincham, J.I., Gomes, A., Handegard, N.O., Howell, K., Jamet, C., Kartveit, K.H., Moustahfid, H., Parcerisas, C., Politikos, D., Sauzède, R., Sokolova, M., Uusitalo, L., Van den Bulcke, L., van Helmond, A.T.M., Watson, J.T., Welch, H., Beltran-Perez, O., Chaffron, S., Greenberg, D.S., Kühn, B., Kiko, R., Lo, M., Lopes, R.M., Möller, K.O., Michaels, W., Pala, A., Romagnan, J.-B., Schuchert, P., Seydi, V., Villasante, S., Malde, K. and Irisson, J.-O. (2023) ‘Machine learning in marine ecology: an overview of techniques and applications’, ICES Journal of Marine Science. Edited by C. Whidden. Oxford University Press (OUP). Available at: https://doi.org/10.1093/icesjms/fsad100. | |
dc.identifier.issn | 1054-3139 | |
dc.identifier.issn | 1095-9289 (electronic) | |
dc.identifier.uri | https://doi.org/10.1093/icesjms/fsad100 | |
dc.language.iso | en | |
dc.publisher | Oxford Univerity Press | |
dc.rights | © The Author(s) 2023. Published by Oxford University Press on behalf of International Council for the Exploration of the Sea. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. | |
dc.subject | acoustics | |
dc.subject | ecology | |
dc.subject | image | |
dc.subject | machine learning | |
dc.subject | omics | |
dc.subject | profiles | |
dc.subject | remote sensing | |
dc.subject | review | |
dc.title | Machine learning in marine ecology: an overview of techniques and applications | |
dc.type | Article | |
dcterms.dateAccepted | 2023-05-26 | |
dcterms.dateSubmitted | 2022-09-29 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Machine learning in marine ecology: an overview of techniques and applications.pdf
- Size:
- 2.17 MB
- Format:
- Adobe Portable Document Format
- Description:
- Final published version