Simulating Phosphorus Load Reductions in a Nested Catchment Using a Flow Pathway-Based Modeling Approach

Abstract

Catchment models are essential tools to identify and predict water quality problems linked to excessive nutrient applications (in this case phosphorus (P)). The Catchment Runoff Attenuation Flux Tool (CRAFT) has been successfully used to model nutrient fluxes and concentrations in north-western European catchments. The model is extremely parsimonious due to the relatively small number of parameters. However, an improvement to the representation of soluble P and particulate P fluxes in the fast-subsurface and surface runoff flow pathways was required. A case study in the north of Ireland applied the original and the new, enhanced (Dynamic) version of the CRAFT to the trans-border Blackwater catchment (UK and Republic of Ireland) covering nearly 1500 km2, with the land use predominantly livestock grazing. The larger size of the Blackwater also required a nested modeling approach to be implemented using a multiple sub-catchment variant (MultiCRAFT). P load reductions in the different sub-catchments were first identified using a simple approach based on the gap between the Water Framework Directive (WFD) limits for “Good” ecological status for soluble reactive P (SRP) concentrations and the recently observed concentrations. Modeling of different mitigation scenarios was then conducted using the MultiCRAFT framework with the best-performing variant of the CRAFT model embedded. The catchment was found to have flashy, episodic delivery of high concentrations of SRP and PP during runoff events which will require different sources (i.e., diffuse and point) of P to be targeted to achieve the WFD targets by the end of the decade. The modeling results thus showed that the required SRP load reductions could be best achieved using a combined scenario of mitigation measures that targeted diffuse sources contributing to both the surface runoff and fast-subsurface flow pathways, with point sources also identified as needing reduction in some sub-catchments.

Description

Publication history: Accepted - 11 September 2023; Published - 14 September 2023.

Keywords

hydrological modeling, diffuse pollution, water quality, phosphorus, Europe, CRAFT model

Citation

Adams, R. and Quinn, P. (2023) ‘Simulating Phosphorus Load Reductions in a Nested Catchment Using a Flow Pathway-Based Modeling Approach’, Hydrology. MDPI AG. Available at: https://doi.org/10.3390/hydrology10090184.

DOI

Collections