Development and verification of a novel isotopic N2O measurement technique for discrete static chamber samples using cavity ring-down spectroscopy

Abstract

Rationale: N2 O isotopomers are a useful tool to study soil N cycling processes. The reliability of such measurements requires a consistent set of international N2 O isotope reference materials to improve inter-laboratory and inter-instrument comparability and avoid reporting inaccurate results. All these are the more important given the role of N2 O in anthropogenic climate change and the pressing need to develop our understanding of soil N cycling and N2 O emission to mitigate such emissions. Cavity ring-down spectroscopy (CRDS) could potentially overcome resource requirements and technical challenges, making N2 O isotopomer measurements more feasible and less expensive than previous approaches (e.g., gas chromatography [GC] and isotope ratio mass spectrometry [IRMS]). Methods: A combined laser spectrometer and small sample isotope module (CRDS & SSIM) method enabled N2 O concentration, δ15 Nbulk , δ15 Nα , δ15 Nβ and site preference (SP) measurements of sample volumes <20 mL, such as static chamber samples. Sample dilution and isotopic mixing as well as N2 O concentration dependence were corrected numerically. A two-point calibration procedure normalised δ values to the international isotope-ratio scales. The CRDS & SSIM repeatability was determined using a reference gas (Ref Gas). CRDS & SSIM concentration measurements were compared with those obtained by GC, and the isotope ratio measurements from two different mass spectrometers were compared. Results: The repeatability (mean ± 1σ; n = 10) of the CRDS & SSIM measurements of the Ref Gas was 710.64 ppb (± 8.64), 2.82‰ (± 0.91), 5.41‰ (± 2.00), 0.23‰ (± 0.22) and 5.18‰ (± 2.18) for N2 O concentration, δ15 Nbulk , δ15 Nα , δ15 Nβ and SP, respectively. The CRDS & SSIM concentration measurements were strongly correlated with GC (r = 0.99), and they were more precise than those obtained using GC except when the N2 O concentrations exceeded the specified operating range. Normalising CRDS & SSIM δ values to the international isotope-ratio scales using isotopic N2 O standards (AK1 and Mix1) produced accurate results when the samples were bracketed within the range of the δ values of the standards. The CRDS & SSIM δ15 Nbulk and SP precision was approximately one order of magnitude less than the typical IRMS precision. Conclusions: CRDS & SSIM is a promising approach that enables N2 O concentrations and isotope ratios to be measured by CRDS for samples <20 mL. The CRDS & SSIM repeatability makes this approach suitable for N2 O "isotopomer mapping" to distinguish dominant source pathways, such as nitrification and denitrification, and requires less extensive lab resources than the traditionally used GC/IRMS. Current study limitations highlighted potential improvements for future users of this approach to consider, such as automation and physical removal of interfering trace gases before sample analysis.

Description

Publication history: Accepted - 18 January 2021; Published online - 5 February 2021.

Keywords

Citation

Bracken, C.J., Lanigan, G.J., Richards, K.G., Müller, C., Tracy, S.R., Well, R., Carolan, R. and Murphy, P.N.C. (2021) ‘Development and verification of a novel isotopic N2O measurement technique for discrete static chamber samples using cavity ring‐down spectroscopy’, Rapid Communications in Mass Spectrometry. Wiley. Available at: https://doi.org/10.1002/rcm.9049.

DOI

Collections