Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healing

dc.contributor.authorRamasamy, Palaniappan
dc.contributor.authorKrishnakumar, Ramachandran
dc.contributor.authorRekha, Ravichandran
dc.contributor.authorVaseeharan, Baskaralingam
dc.contributor.authorSaraswathi, K.
dc.contributor.authorRaj, Mohan
dc.contributor.authorHanna, Robert E.B.
dc.contributor.authorBrennan, Gerard P.
dc.contributor.authorDayanithi, Govindan
dc.contributor.authorVijayakumar, Sekar
dc.date.accessioned2021-08-11T10:52:15Z
dc.date.available2021-08-11T10:52:15Z
dc.date.issued2021-07-28
dc.descriptionPublication history: Accepted - 25 June 2021; Published online - 28 July 2021.en_US
dc.description.abstractThe preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PWHAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature. The UP-HAM consists of a translucent yellowish mass of flexible membranes with an average thickness of 42 µm. PW-HAM wound dressings that had been processed, decellularized, and dehydrated had a thinner average thickness of 30 µm and lacked nuclear-cellular structures. Following successful decellularization, discrete bundle of fibrous components in the stromal spongy layers, microvilli and reticular ridges were still evident on the surface of the processed HAM, possibly representing the location of the cells that had been removed by the decellularization process. Both wet and dry HAM wound dressings are durable, portable, have a shelf life of 3–5 years, and are available all year. A slice of HAM dressing costs 1.0 US$/cm2 . Automation and large-scale HAM membrane preparation, as well as storage and transportation of the dressings, can all help to establish advanced technologies, improve the efficiency of membrane production, and reduce costs. Successful treatment of wounds to the cornea of the eye was achieved with the application of the HAM wound dressings. The HAM protein analysis revealed 360 µg proteins per gram of tissue, divided into three main fractions with MWs of 100 kDa, 70 kDa, and 14 kDa, as well as seven minor proteins, with the 14 kDa protein displaying antibacterial properties against human pathogenic bacteria. Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 July 2021 | Volume 9 | Article 695710 fbioe-09-695710 July 22, 2021 Time: 16:39 # 2 Ramasamy et al. HAMP-ZnO Nanoparticles HAM Wound Dressing Wet and dry wound dressings were produced. HAM proteins were purified and analysed. The zinc oxide nanoparticles (HAMP-ZnO NP) made from HAM proteins were characterised and tested for their antibacterial activity. Wounds to the cornea of the eye healed easily when treated with HAM wound dressings. Fresh human Amniotic membrane, Serological screening, selection of disease-free HAM, reome stromal layer, preparation of HAM. UNPROCESSED HAM Cuboidal epithelial cells, basement membrane, compact layer, stromal and spongy layers containing scatted fibroblast cells are visible in hsitological analysis. The flow chart depicts the methods for processing, and preparation of wet (PWHAM) and dry (PD-HAM) wound healing dressings. HAM proteins, Nanoparticle synthesis (HAMP-ZnO NP) and analysis. Antibacterial analysis show Inhibition of growth and biofilm formation of pathogenic bacteria . Processed HAM lacked a nuclear-cellular epithelium, but it did have a distinct fibrous elements in basement membrane, stromal and spongy layers. Processed PW-HAM (Light &SEM) showed smooth epithelial surface topography with microvilli,. HAM dressing, wet/dry, packed, labelled, sterilised and processed. They are durable, portable, have long shelf life . A slice of HAM dressing costs US$ 1.0 / cm² . The wound dressings are ready to be applied. The dermal wounds and conjunctival surface can be successfully repaired using processed HAM wound dressings GRAPHICAL ABSTRACT | Flow chart depicting the methods, preparing, and characterizing, by histological, and scanning electron microscopy, of wet (PW-HAM) and dry (PD-HAM)of wound healing dressing, and preparation of nanoparticles (HAMP ZnO NP); and application of HAM wound dressing. A wide range of antibacterial activity was observed after treatment with 75 µg/ml zinc oxide nanoparticles derived from human amniotic membrane proteins (HAMP-ZnO NP), including dose-dependent biofilm inhibition and inhibition of Gram-positive (S. aureus, S. mutans, E. faecalis, and L. fusiformis) and Gram-negative bacteria (S. sonnei, P. aeruginosa, P. vulgaris, and C. freundii).en_US
dc.description.sponsorshipPR has acknowledged Sree Balaji Medical College and Hospital for providing the article processing charges of the journal, and moral and technical support. The support of Cologenesis Health Care Pvt. Ltd. for a study on “Human amniotic membrane for ocular and dermal applications” is sincerely appreciated.en_US
dc.identifierhttp://hdl.handle.net/20.500.12518/342
dc.identifier.citationRamasamy, P., Krishnakumar, R., Rekha, R., Vaseeharan, B., Saraswathi, K., Raj, M., Hanna, R. E. B., Brennan, G. P., Dayanithi, G. and Vijayakumar, S. (2021) ‘Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healing’, Frontiers in Bioengineering and Biotechnology, 9. doi: 10.3389/fbioe.2021.695710.en_US
dc.identifier.issn2296-4185
dc.identifier.urihttps://doi.org/10.3389/fbioe.2021.695710
dc.language.isoenen_US
dc.publisherFrontiers Mediaen_US
dc.rights© 2021 Ramasamy, Krishnakumar, Rekha, Vaseeharan, Saraswathi, Raj, Hanna, Brennan, Dayanithi and Vijayakumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_US
dc.subjectamniotic membraneen_US
dc.subjectwound healing dressen_US
dc.subjectwet/dry membraneen_US
dc.subjectproteinsen_US
dc.subjectbiofabricationen_US
dc.subjectHAMP's-ZnO nanoparticlesen_US
dc.subjectantibacterial activitiesen_US
dc.subjectbiofilmen_US
dc.titleBio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healingen_US
dc.typeArticleen_US
dcterms.dateAccepted2021-06-25
dcterms.dateSubmitted2021-04-15

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet-Dry HAM Dressing Membrane for Wound Healing.pdf
Size:
10.09 MB
Format:
Adobe Portable Document Format
Description:
Final published version

Collections